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Abstract: We discuss the molecular diffusion transport in dilute liquid solutions under
non-isothermal conditions. This discussion is actualized by an occurring misinterpretation
of thermodynamic transport equations written in terms of chemical potential. Our treatment
is based on the consideration of the entropy production.
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1. Introduction

In this paper we discuss the molecular diffusion transport in infinitely dilute liquid solutions
under non-isothermal conditions. This discussion is motivated by an occurring misinterpretation of
thermodynamic transport equations written in terms of chemical potential in the presence of temperature
gradient. The transport equations contain the contributions owned by a gauge transformation related
to the fact that chemical potential is determined up to the summand of form (AT + B) with arbitrary
constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a
constant value and B is owned by the potential energy invariance with respect to shifts by a constant
value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this
gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our
treatment is based on consideration of the entropy balance (e.g., see [1–3]) and suggests a promising hint
for attempts of evaluation of the thermal diffusion constant from the first principles.

We also comment on impossibility of the “barodiffusion” for dilute solutions, understood in a sense
of diffusion flux driven by the pressure gradient itself. When one speaks of “barodiffusion” terms in
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literature [3], these terms typically represent the drift in external potential force field (e.g., electric or
gravitational fields), where in the final equations the specific force on molecules is substituted with
an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the
interpretation of the latter as “barodiffusion” is fragile and may hinder the accounting for the diffusion
fluxes produced by the pressure gradient itself.

2. Non-isothermal diffusion in the external potential

We wish to rederive the diffusion current of solutes in non-isothermal solvents using the basic
thermodynamics and Onsager’s principle [1,2]. We focus on the case of infinitely dilute solutions. We
start from the first thermodynamic law for a two-component solution,

dU = T dS − P dV +
∑
j=1,2

µj dNj . (1)

Here the standard notations are used. S is the entropy of the system, U is the internal energy, V is
the volume, N1, N2 and µ1, µ2 are respectively the number of particles and chemical potentials of the
solvent and solute (in what follows the indices 1 and 2 denote correspondingly the solvent and solute).
The number densities of particles are nj = Nj/V . We consider dilute solutions, n2 � n1 (which is
typical for solutions of gas in liquid). For a dilute solution, molecules of solute do not interact with
each other and one can neglect the variations of the volume related to redistribution of the solute, which
implies v1N1 + v2N2 = V , where vj is the volume occupied by the molecule of sort j. We assume that
liquid is incompressible, so that V = const and v1,2 = const. Therefore, in all transport processes the
condition v1dN1 + v2dN2 = dV = 0, implies the relation dN1 = −(v2/v1) dN2. We also assume that
for a small variation of liquid density, due to thermal expansion, this relation holds true. Hence, we treat
the variation of S as a function of U , n1, and n2 for the fixed volume V .

Using the specific quantities u = U/V and s = S/V = s(u, n1, n2) we write for a near-equilibrium
system

dS

dt
=

d

dt

∫
V

s dV =

∫
V

∂s

∂t
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∫
V

((
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∂u

)
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Here the subscripts of derivatives indicate the variables kept constant. From Eq. (1) we obtain(
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)
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=
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T
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The first derivative in the above equation is identical to (∂s/∂u)n1,n2 = 1/T , the other two, with respect
to nj , may be combined to yield(
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where we used the incompressibility condition dN1 = (v2/v1)dN2. Hence,

dS

dt
=

∫
V

(
1

T

∂u

∂t
+

(
− µ̃2

T

)
∂n2

∂t

)
dV ,

where µ̃2 = µ2−(v2/v1)µ1. Note, that the effective chemical potential µ̃ has been also used in Ref. [4] for
thermodynamical treatment of the thermodiffusion effect. Hereafter for various thermodynamic variables
xj we employ the notation x̃2 = x2 − (v2/v1)x1. The time derivatives in the last equations are related
to the corresponding fluxes as (∂u/∂t) = −∇ · ~Ju and (∂n2/∂t) = −∇ · ~Jn2 , where ~Ju and ~Jn2 are the
fluxes of u and n2, respectively. Hence we obtain

dS

dt
=

∫
V

(
− 1

T
∇ · ~Ju +

µ̃2

T
∇ · ~Jn2

)
dV .

For an isolated system (with vanishing fluxes on the boundary) the integration by parts yields

dS

dt
=

∫
V

(
~Ju · ∇

1

T
+ ~Jn2 · ∇

(
− µ̃2

T

))
dV . (2)

For near-equilibrium systems the fluxes are linear in gradients, that is(
~Ju
~Jn2

)
= A ·

(
∇(1/T )

∇(−µ̃2/T )

)
,

where A is the matrix of the respective transport coefficients. The positivity of dS/dt in Eq. (2) for any
states of the system requires matrix A to have only positive eigenvalues. In particular, the absence of
complex eigenvalues implies A to be symmetric;

~Ju = K∇ 1

T
+ αn2∇

(
− µ̃2

T

)
, (3)

~Jn2 = αn2∇
1

T
+
Dn2

kB
∇
(
− µ̃2

T

)
, (4)

where (K/T 2) is the heat conductivity, D is the molecular diffusivity, kB is Boltzmann constant, and
α is the coefficient which describes the cross-currents. Coefficient α should not be mistaken for the
thermal diffusion constant [3]. Note, that writing Eq. (3) we have essentially exploited the Onsager’s
principle [1,2]. Then Eq. (2) reads

dS

dt
=

∫
V

[
K

(
∇ 1

T

)2

− 2αn2∇
1

T
· ∇ µ̃2

T
+
Dn2

kB

(
∇ µ̃2

T

)2
]
dV .

The entropy production condition dS/dt > 0 for any non-equilibrium state requires the quadratic form
of the gradients ∇(1/T ) and ∇(µ̃2/T ) in the above integrand to be positive. This yields the condition
for the coefficients, KD > α2kBn2, which is surely fulfilled for dilute solutions, n2 � 1, even when
α > DT .
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The above derivation is based on the general thermodynamic relations. To understand the microscopic
meaning of the coefficient α we consider the microscopic expression for the energy flux ~Ju, which is
composed by the kinetic transfer with molecules and the phonon-mediated energy flux ~JPh,

~Ju = u1 ~Jn1 + u2 ~Jn2 + ~JPh ,

where uj is the internal energy per one molecule of sort j and ~Jnj
is the respective particle flux. Making

use of relation ~Jn1 = −(v2/v1) ~Jn2 , we find u1 ~Jn1 + u2 ~Jn2 = ũ2 ~Jn2 , where ũ2 = u2 − (v2/v1)u1.
Substitution of Eq. (4) into the latter expression for ~Ju yields

~Ju = αn2ũ2∇
1

T
+
Dn2

kB
ũ2∇

(
− µ̃2

T

)
+ ~JPh .

The phonon energy flux ~JPh is driven by temperature gradient and solute concentration
inhomogeneity, because the concentration of guest molecules effects the spectrum of phonons and their
scattering;

~JPh = −λ0∇T − χT∇n2 = −λ0∇T − χTn2∇ lnn2 .

Here λ0 is the heat conductivity of the solute-free liquid (indeed, for n2 = 0 the net energy flux
turns −λ0∇T ), coefficient χ can generally depend on the temperature, but is independent from n2 for
dilute solutions. To use the Onsager’s principle we have to rewrite energy flux Ju in terms of natural
thermodynamic forces ∇(1/T ) and ∇(−µ̃2/T ) (cf Eqs. (3) and (4)). We write the chemical potential in
the following form:

µ2 = kBT lnn2 + ∆µ2 ,

where ∆µ2 = µ2−kBT lnn2 is the sum of the ideal part of the chemical potential, which depends on the
internal degrees of freedom of the gas molecule, of the non-ideal part, describing the interactions with
the solvent and of the part, containing the local pressure; it is important that for dilute solutions ∆µ2

does not depend on n2, see e.g. [4]. For dilute solutions |∇n1|/n1 � |∇n2|/n2 and we can write

∇ lnn2 = ∇ µ̃2 −∆µ̃2

kBT
= − 1

kB
∇
(
− µ̃2

T

)
− ∂

∂T

(
∆µ̃2

kBT

)
∇T .

Thus, the energy flux reads

~Ju =

(
λ0T

2 − χT 3n2
∂

∂T

∆µ̃2

kBT
+ αn2ũ2

)
∇ 1

T
+

(Dũ2 + χT )n2

kB
∇
(
− µ̃2

T

)
.

Comparing the latter equation for ~Ju with Eq. (3), one findsK = λ0T
2−χT 3n2(∂/∂T )(∆µ̃2/kBT )+

αn2ũ2 and

α =
Dũ2 + χT

kB
.

Hence, the solute flux is

~Jn2 = −Dn2

[
−
(
χT

kBD
+
ũ2
kB

)
∇ 1

T
+∇ µ̃2

kBT

]
= −Dn2

[
− χT

kBD
∇ 1

T
+∇ µ̃2 − ũ2

kBT
+
∇ũ2
kBT

]
. (5)
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Using the specific heat capacity of the solvent cV,1 and the solute cV,2, which do not depend on n2

for dilute solutions, we write, ũ2 = ũ2,0 +
∫ T

c̃V,2(T
′)dT ′ + φ̃2, where ũ2,0 does not depend on

temperature and φj is the potential energy of the molecule of sort j (j = 1, 2) in the external field, e.g.
gravity. Further, for dilute solutions with negligible thermal expansion (∂vj/∂T ) � (vj/T )—which
holds nearly true for the aqueous solution of chemically inert gases—one can as well find µ̃2 =

T S̃0,2 + T
∫ T

(c̃V,2(T
′)/T ′) dT ′ + φ̃2, where S̃0,2 is nearly independent from temperature and pressure.

Finally, for dilute solutions, where |∇n1|/n1 � |∇n2|/n2, Eq. (5) takes the form

~Jn2 = −Dn2

[
∇n2

n2

+
χ

kBTD
∇T +

∇φ̃2

kBT

]
. (6)

Using m̃2~g = −∇φ̃2 for the gravitational field, we recast the above equation into the form

~Jn2 = −Dn2

[
∇n2

n2

+ αT
∇T
T
− M̃~g

RT

]
. (7)

Here M̃ = M2 − (v2/v1)M1, Mj is the molar mass, and

αT =
χ

kBD
(8)

is the thermal diffusion constant. The thermodynamic expression for the thermal diffusion constant has
been also reported in Ref. [4], where it has been evaluated with different approach.

Theoretical study [4] estimates the isotope part of thermal diffusion

αT,isot =
3

4
ln
M2v1
M1v2

to be strictly temperature-independent. This analytic result underestimates the experimental results [5]
on the isotopic part approximately by factor 3.

3. Discussion and Conclusion

We would like to emphasize for non-isothermal systems that in the thermodynamic fluxes (3) and
(4) the term ∇(−µ̃2/T ) describes not merely the Fickian diffusion, as well as the terms with α are
not purely the thermodynamic cross-fluxes. These terms are mutually interweaved and the terms with
α can be present in the absence of any thermodynamic cross-effects, purely pertaining to the gauge
transformation associated with the invariance of the chemical potential to addition of (AT + B) with
arbitrary constants A and B.

With relation between of αT and χ (Eq. (8)), one can consider possibility to derive the thermodynamic
expression for the thermal diffusion constant, dealing not with the current of specie molecules but
with the thermal motion energy flux ~JPh across the volume with maintained temperature and specie
concentration gradients.

At the very beginning of the derivation procedure we excluded the contributions to entropy production
owned by the volume change, (∂S/∂V )U,N1,N2 , which would bring-in the thermodynamic flux driven by
the thermodynamic force ∇(P/T ). This compressibility-related force was excluded by virtue of the
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vanishing effect of the solute redistribution on the system volume for infinitely dilute solutions. The
cross-current associated to ∇(P/T ) is the barodiffusion, which, therefore, vanishes for dilute solutions
we consider. However, frequently in literature (e.g., [3]), the term describing the drift in an external
potential force field, i.e. the last term in Eq. (6), is recast in terms of the hydrostatic pressure gradient
produced by the force field. For instance, in [3], ~g is substituted with ρ−1∇P . After this substitution, all
the terms in the expression for the molecular diffusion flux are referred to as barodiffusion. We would
like to warn against such a usage of the notion of barodiffusion and suggest to distinguish between the
fluxes driven by external force fields and the flux driven by thermodynamic force ∇(P/T ), meaning
only the latter to pertain to barodiffusion. The interpretation of the former as barodiffusion is fragile and
may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.

The calculation of the thermal diffusion constant from the first principles is actualized by the lack
of experimental data on the values of this constant for weakly soluble gases, such as methane, carbon
dioxide, etc., and importance of thermal diffusion of these gases in marine sediments [6–8].
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