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Abstract

Electric bicycles (E-Bikes) are gaining popularity as a sustainable mode of transportation
due to their energy efficiency and zero-emission operation. However, challenges such as
battery overcharging, overheating, and degradation from improper use can reduce battery
lifespan and increase maintenance costs. To address these issues, this paper presents the
design and implementation of a Battery Management System (BMS) tailored for E-Bike
applications, with a focus on enhancing safety, reliability, and performance. The proposed
BMS includes core functionalities such as State of Charge (SoC) estimation, temperature
monitoring, under-voltage, and overcharge protection. Different approaches including
Open-Circuit Voltage (OCV), Coulomb Counting (CC), and Kalman Filter techniques is
employed to improve SoC estimation accuracy. The circuit for CC based BMS was first sim-
ulated using Proteus, and system behavior was modeled in MATLAB Simulink to validate
design assumptions before hardware implementation. An Arduino Uno microcontroller
was used to control the system, interfacing with an LM35 temperature sensor, a voltage
divider, and an ACS712 current sensor. The BMS controls battery charging based on SoC
levels and activates a cooling fan when the battery temperature exceeds 45 °C. It discon-
nects the charger at 100% SoC and triggers a beep alarm when SoC falls below 40%. An
external charger and regenerative charging from four electrodynamometers on the bicycle
chain recharge the battery when SoC drops below 20%, provided the load is disconnected.
Measurement results closely matched simulation data, with the MATLAB model showing
44% SoC after 3 h, compared to the actual real-time 45.85%. The system accurately tracked
charging/discharging patterns, validating its effectiveness. This compact and cost-effective
BMS design ensures safe operation, improves battery longevity, and supports broader
adoption of E-Bikes as an eco-friendly transportation solution.

Keywords: electric vehicle; temperature and current sensors; battery management system;
real data; State of Charge; sustainable transport

1. Introduction

Due to their extended range and pedal-assist capabilities, electric bicycles (e-bikes)
are becoming an increasingly popular and environmentally friendly mode of transporta-
tion. At the core of every e-bike is the Battery Management System (BMS), a critical
component that regulates the battery pack’s performance, lifespan, and safety [1]. To main-
tain battery health, various monitoring techniques—such as ambient temperature, volt-
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age, and current sensing—utilize a combination of analog and digital sensors integrated
with microcontrollers.

The evolution of electric bicycles parallels advancements in motor and battery tech-
nologies. Early e-bikes, which used lead-acid batteries and brushed motors, were limited in
range and performance. However, the introduction of lithium-ion batteries and brushless
motors has significantly transformed e-bikes—making them lighter, more energy-efficient,
and offering a smoother riding experience. These advancements underscore the increasing
need for more advanced BMS solutions to optimize the performance of modern powertrain
components [2].

Despite the progress in BMS technology, several challenges remain. One major issue is
achieving accurate state estimation, particularly regarding State of Charge (SOC) and State
of Health (SOH). Real-time accuracy continues to be difficult due to the inherent complexity
and variability of battery behavior [3,4]. Additionally, identifying and mitigating failures,
ensuring safety across diverse operating conditions, and addressing thermal management
issues remain ongoing concerns for BMS designers.

Moreover, to meet the varied needs of users, e-bike BMS systems must adapt to
different riding styles, terrain profiles, and battery chemistries. This presents a significant
challenge to BMS developers, who must design innovative solutions that strike a balance
between safety, reliability, user experience, and cost-effectiveness [5]. Figure 1 shows a
standard electric bicycle design.

Cushion

Handle

Batteries

Adjustable Height

Suspension Fork
After Dialing
Motor Anti-out Chain Wheel

Figure 1. Standard Electrical Bicycle Design.

The main objectives of this research are as follows:

*  To design and implement a compact, low-cost Battery Management System (BMS)
tailored for electric bicycle (E-Bike) applications, with emphasis on enhancing safety,
reliability, and battery performance.

e  To improve the accuracy of State of Charge (SoC) estimation by developing a method
that integrates Open-Circuit Voltage (OCV), and Coulomb Counting (CC) techniques.

e To incorporate real-time monitoring and protection features, including temperature
sensing, overcharge and under-voltage protection, and automated cooling control,
ensuring safe and efficient battery operation.
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¢  To validate the proposed BMS design through both simulation and hardware imple-
mentation, utilizing Proteus, MATLAB Simulink, and an Arduino-based hardware for
testing and performance evaluation.

The novelty lies in combining hybrid SoC estimation, auto charging integration, and real-
time intelligent protection in a low-cost BMS for bicycles—a gap that existing state-of-the-art
systems in electric mobility often overlook. This work lies in the development of a compact
and cost-effective Battery Management System (BMS) specifically designed for electric
bicycles, addressing a gap in existing state-of-the-art systems that primarily focus on
larger-scale electric vehicles. Unlike conventional approaches that rely on a single method
for State of Charge (SoC) estimation, the proposed system integrates a methodology like
Open-Circuit Voltage (OCV), Coulomb Counting (CC), and Kalman Filter techniques to
significantly improve accuracy. The BMS further contributes to enhanced safety and perfor-
mance by incorporating real-time temperature monitoring, automated cooling, overcharge
and under-voltage protection, and intelligent charger disconnection. A unique contribution
is the integration of regenerative charging from electrodynamometers on the bicycle chain,
reducing dependence on external charging and promoting sustainable energy use. Simula-
tion and hardware validation demonstrated close alignment in SoC estimation, confirming
the reliability of the design. By leveraging low-cost and widely available components,
the proposed BMS provides a scalable and practical solution to improve battery health,
extend lifespan, and encourage broader adoption of eco-friendly E-Bike transportation.

2. Literature Review
2.1. Electric Bicycles and Battery Management Systems for Pacific Island Conditions

Electric bicycles (e-bikes) have emerged as a popular mode of transportation as the
world moves toward more environmentally friendly, cost-effective, and convenient mobility
solutions. In Pacific Island countries like Fiji, where environmental preservation and
clean energy development are top priorities, the adoption of e-bikes presents a promising
opportunity to reduce carbon emissions and improve transportation accessibility.

However, the performance and maintenance of e-bike battery systems are critical
to ensuring their safe and efficient operation. Without proper oversight and regulation,
issues such as battery degradation, overheating, and safety hazards can compromise the
reliability and lifespan of e-bikes. These challenges may deter potential users and hinder
the widespread adoption of this sustainable transportation option. Therefore, it is essential
to develop a Battery Management System (BMS) specifically tailored to the unique climatic
conditions and usage patterns of Pacific Island countries [6,7].

An advanced BMS offers a comprehensive approach to managing e-bike batteries by
optimizing their performance, extending their lifespan, and ensuring the safety of both
riders and pedestrians. Among various types of batteries used in electric vehicles (EVs),
lithium-ion (Li-ion) batteries are the most common due to their high energy density and
efficiency [8,9].

2.2. Battery Technologies for EV’s

Rechargeable batteries for electric vehicles have seen increasing demand in recent
years [10,11]. Various battery technologies are employed for transportation purposes,
including:

* Lead-acid

e  Lithium-ion (Li-ion)

e  Zinc-bromine flow battery (ZBFB)
¢ Sodium-sulfur (NaS)

¢ Nickel-cadmium (NiCd)
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e  Sodium nickel chloride (NaNiCl)
*  Vanadium redox flow battery (VRFB) [12]

The future of electric vehicles heavily depends on critical factors such as battery effi-
ciency, cost, safety, and operational life cycle. Several battery types—such as Lithium-Sulfur
(Li-S), Molten Salt (Na-NiCl,), Nickel-Metal Hydride (Ni-MH), and Lithium-Ion—offer sim-
ilar energy storage capacities. Additionally, Lead-Acid, Nickel-Cadmium, and Nickel-Metal
Hydride batteries are discussed and compared based on their characteristics [13].

Li-ion batteries, in particular, stand out for their long lifespan, low self-discharge rate,
high energy density, high reliability, and excellent efficiency [14]. The properties of various
battery types are summarized in Table 1 [15]. One of the main challenges in battery systems
is accurately determining the State of Charge (S0C) and temperature of the battery. These
parameters are critical for assessing the available capacity and ensuring safe and efficient
battery operation. To estimate the current SoC of a battery, a specialized SoC estimator
is used.

Table 1. Characteristics of different types of Batteries.

Battery Energy Density Power Density Nominal Life Depth of Charging
Type (Wh/L) (W/L) Voltage Cycle  Discharge % Efficiency %
Lead Acid 30-50 180 2 200-300 50 50-95
Sodium Sulphur 140-300 140-180 2.08 1500 100 70
Sodium-Nickel-Chloride 160-275 150-270 - 3000 100 84
Nickel cadmium 50-80 150 1.2 1000 85 70-90
Lithium-ion 100-270 250-680 3.2-3.7  600-3000 95 80-90

2.3. SOC Estimation

Lithium-ion batteries are widely used in electronic devices, smart grids, and electric
vehicles due to their superior characteristics—such as high energy and power density, low
self-discharge rate, and long lifespan [4,5]. Despite significant advancements in battery
technology, several challenges remain. To ensure safe and reliable operation, a Battery
Management System (BMS) is implemented to monitor internal battery conditions and
execute control strategies [16].

Accurate state estimation is crucial for intelligent and efficient battery management,
as it provides essential information to the control system. Key battery states include State
of Charge (SoC), State of Temperature (SoT), State of Health (SoH), among others [17].
Among these, SoC and SoT vary continuously during operation, requiring real-time moni-
toring and estimation for effective system performance. Figure 2 illustrates the various SoC
estimation methods.

SOC Estimation
Methods
Y
Direct Measurement Model Based
ocv KF

Figure 2. Different SOC estimation methods.
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2.3.1. Direct Measurements

The main approaches under direct measurement for estimating SOC are open circuit
voltage (OCV), electromotive force (EMF), internal resistance (IR). With lithium-ion bat-
teries, the OCV may be used to determine the battery SOC. Analysing the variations in
electrical energy in the battery pack’s electrode materials is also helpful. Therefore, correct
OCV modelling has significant implications for lithium-ion battery management. The ex-
perimental findings demonstrate that the battery’s temperature has a considerable impact
on the OCV-50C feature. Consequently, these aspects must be considered to improve
the accuracy of the model and battery SOC estimate [18]. The relationship between SOC
and OCV varies with battery type. The relationships between them differ amongst batter-
ies [19]. When the battery is fully charged, the estimated EMF voltage is used to project the
EMEF voltage. There is no connection between this approach and time. To overcome the
impedance distortion problem, the EMF estimate approach makes use of terminal voltage,
current and impedance [20]. The effects of age and temperature are not considered in this
procedure. The lithium-ion battery’s resistance is computed for SOC in the IR estimate
technique. Battery charging and discharging current are used to calculate resistance. DC
resistance is the term for resistance. For a brief period, terminal voltage was recorded as the
current changed [21]. It is difficult to estimate the resistance value since it is so tiny [22,23].
Therefore, this approach isn’t a trustworthy or ethical one for SOC estimation.

2.3.2. Book-Keeping Estimations

The Coulomb counting (CC) method or the ampere-hour counting method calculates
the charging and discharging the battery by integrating the current over time and then
divides the charge by the total available capacity to calculate the SOC. the initial SOC value
a concern as it will/may lead to errors in the SOC estimation’s accuracy. This approach
only works quickly when the starting SOC value is known [24-26]. The equation below
shows the SoC estimation using CC method:

1 ottt

SOC(ty) = SOC(t) + - x / " ibat(dr) x 100% (1)
n . t,’

where SOC(ty) is the estimated SOC, SoC(t;) is the SoC initial value, C; is the nominal

Capacity and iy, is the charge and discharge current of the battery.

2.3.3. Model-Based Methods

There are several limitations to real-time data estimating techniques in both direct
measurement and bookkeeping. The application of model-based SOC estimate techniques
helps to address the drawbacks of traditional methodologies. Li-ion battery models with
refined algorithms are used in model-based techniques [27,28]. Li-ion battery parameters
such as voltage, current, and temperature are measured and compared to their actual
values. To estimate the SOC, the difference between the real value and the estimated
value is compared, generating the error signal. Adaptive filtering lithium-ion batteries are
utilized in the model-based estimation technique. The best option for accurately estimating
Li-ion battery SOC is to use the Adaptive Filter technique. It offers precision, accuracy,
and durability. The Kalman Filter with Coulomb counting approach has been used to
accomplish the SOC estimate [29]. With a liner system, the Kalman filter functions well.
On a non-linear system, the extended Kalman filter (EKF) and the adaptive extended
Kalman filter (AEKF) function. Two model-based estimate techniques have been developed
using EKF and AEKF. The comparison of the model and the system’s actual measured value
serves as the foundation for SOC estimate. Based on noise covariance, AEKF performs
better than EKF [30]. EKF estimation during the discharging stage with more accuracy.
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MATLAB/Simulink is used to evaluate and regulate the operation of the BMS, whereas
EKEF is used for monitoring and control. The augmented AEKF algorithm is used to
increase the estimation’s accuracy when the specific features of static noise in the SOC
estimation of lithium-ion battery packs are uncertain or vary over time [31]. In contrast
to the EKFE, the Unscented Kalman filter does not really linearize state-space equations.
Rather, a nonlinear Unscented Transformation (UT) is employed [32]. The mean and error
covariance are computed and updated frequently in UT to provide sigma points for states.

2.4. Thermal Management

In EVs, where battery packs are an essential component, battery thermal management
is a crucial feature of BMS. Thermal Management ensures both the battery long life and
safe operation. The temperature of a battery pack is affected by several factors, such as its
working parameters, charging and discharging rate, and surrounding environments. When
the battery pack is charged or discharging, heat is produced thus the heat generated need to
be released to keep the Battery safe. Various methods are used to control the temperature of
the battery. One of the methods to cool the battery is Passive cooling it involves employing
fins and heat sinks, two naturally occurring cooling methods, to dissipate the heat generated
by the battery. Another method is Active cooling which utilises liquid cooling or a fan,
to eliminate heat generated by the battery. Thermal management algorithms (based on
mathematical models that consider several factors like as temperature, voltage, current,
and battery capacity) are also used to control battery pack temperature within a preset
range by controlling the rate at which it charges and discharges. Another method to
control temperature is by inserting temperature sensor inside the battery pack to adjust
the charging and discharging rates of the battery [33,34]. Table 2 show the different battery
charging and discharging temperature of various battery types [2]. To charge a battery
effectively based on its State of Charge (SoC) and temperature range, it is essential to
understand the charging techniques and methods used for EV batteries.

Table 2. Battery charging and discharging temperatures.

Battery Charging Self-Discharge Rate Charge Temperature Discharge Temperature
Type Efficiency (% Months) Q) Q)
Li-ion 3-10 Oto45 —20 to 60
NiCD 20 Oto45 —20to 65
Lead Acid 5 —20to 50 —20to 50
NiMH 30 —20 to 65 —20to 65

2.5. Charging Methods Used for EV and E-Bike Batteries

In many Pacific Island countries like Fiji, governments are actively promoting the
adoption of electric vehicles (EVs) and investing in the development of EV infrastructure to
reduce carbon emissions. With zero tailpipe emissions, EVs offer a cleaner, more sustainable,
and environmentally friendly alternative to fossil-fuel-powered vehicles, aligning with
international climate goals such as those outlined in COP23.

To efficiently charge EV batteries, various smart and fast-charging methods are em-
ployed. These are categorized into three primary levels:

¢ Level 1 Charging: This method uses a standard 10 A household power outlet. It is
the slowest form of charging, typically requiring 8-12 h to fully charge an EV battery.

¢ Level 2 Charging: Faster than Level 1, this method uses a dedicated 16 A power point.
It generally takes 4-8 h for a full charge.
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* Level 3 Charging: These are DC fast chargers, commonly found in public areas,
workplaces, and charging stations. They can charge an EV from 0% to 85% in just
30 min to 1 h.

*  Another method used by EV owners is charging through photovoltaic (PV) panels in-
stalled on rooftops or open fields. Additionally, wireless charging technology—based
on electromagnetic induction—is gaining popularity for its convenience [35,36].

For electric bicycles, a wired charger (Model: CHR-48V /LI, STonBike) is typically provided.
This charger allows the battery to be charged from 41.28 V (0%) to 54.94 V (100%) in
approximately 3 h and 45 min. In comparison, the wireless charger can achieve full charge
in around 3 h and 19 min [37].

It's important to note that a lithium-ion battery can only perform one operation at a
time—either charging or discharging. When discharging, electrons flow from the anode
to the cathode; during charging, electrons flow from the cathode to the anode. If both
operations occur simultaneously, it places chemical stress on the electrodes, increasing the
cell temperature and potentially leading to thermal runaway or even battery explosion.
Figure 3 shows the schematic diagram of a lithium-ion battery cell [2].

Charge
Electrons I ﬁ
Load
—_— |
Discharge

Megative electrode (anode)

Current
Collector

Current

Collector

Charge
L . e Megative ions (if present)
Positive ions - 2o opposite direction
Discharge

Figure 3. Schematic diagram of Li-ion cell.

From the above literature review, it is evident that the Battery Management System
(BMS) plays a crucial role in electric vehicles (EVs), especially in ensuring the safety, effi-
ciency, and longevity of EV batteries. A well-designed BMS protects the battery from over-
charging, over-discharging, manages thermal conditions, and helps prolong battery life.

Among all battery types, lithium-ion batteries are the preferred choice for BMS appli-
cations in EVs due to their long lifespan, low self-discharge rate, high energy density, high
reliability, high efficiency, as well as their lightweight and compact size.

For State of Charge (SoC) estimation, the Kalman Filter (KF) is widely considered the
most accurate method, as it accounts for variables such as temperature, voltage, and current,
and effectively eliminates noise in measurement. However, due to its complexity, it is best
suited for larger EVs. In contrast, for smaller EVs like electric bicycles, simpler methods
such as Open Circuit Voltage (OCV) and Coulomb Counting (CC) are often used because
they are easier to implement and require less computational power.

Temperature management is another essential function of the BMS. High temperatures
can accelerate battery degradation, while low temperatures can reduce performance and
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efficiency. To maintain optimal battery temperature, cooling fans or heating elements are
often used. It’s also important to note that lithium-ion batteries cannot be charged and
discharged simultaneously. During charging, electrons flow from the cathode to the anode,
and during discharging, they flow from the anode to the cathode. If both operations occur
simultaneously, it may cause chemical stress, temperature rise, and potentially lead to
battery explosion.

Various researchers have employed both wired and wireless charging methods,
and sensors such as LM35 (temperature sensor), voltage divider sensors, and current
sensors (e.g., ACS712 or INA219) have been commonly used to monitor temperature,
voltage, and current [35-38].

3. Sensor Integration in the Design of a Battery Management System

To achieve the objectives of this work— the design and implementation of a Battery
Management System (BMS) for an electric bicycle, the following methodology will be
followed: Based on the findings from the literature review, a visual circuit will first be
designed using Proteus software, and a system model will be created in MATLAB Simulink
to verify the performance before hardware implementation. Once the simulation results
are satisfactory, sensor testing will be conducted to ensure accurate readings.

The sensors will measure essential battery parameters such as voltage, current,
and temperature, and this data will be sent to an Arduino Uno microcontroller. The Ar-
duino will run a custom program that calculates the State of Charge (SoC) and monitors the
temperature using the Open Circuit Voltage (OCV) and Coulomb Counting (CC) methods
to manage SoC and thermal conditions.

The sensors used in this research work include:

e LMB35—for temperature measurement
*  Voltage divider circuit—for voltage measurement
*  ACS712—for current measurement

3.1. Battery Charging Control

Based on the SoC value, the system will decide whether the battery needs charging.
To avoid overcharging and over-discharging, the following control strategy will be applied:

e IfSoC drops below 20%, an external charger will be activated to recharge the battery.

¢  Additionally, four electro-dynamometers will be installed on the bicycle chain. These
will generate energy to charge the battery when the user is pedaling—only when
the battery is not connected to the load, as lithium-ion batteries cannot charge and
discharge simultaneously.

*  Once the battery reaches 100% SoC, the charger will automatically disconnect to
prevent overcharging.

e If SoC falls below 40%, a beep alarm will sound to alert the user that recharging is
needed soon.

3.2. Thermal Management
To manage battery temperature effectively:

*  Cooling fans will be installed near the battery to dissipate heat.

e If the battery temperature rises above 45 °C, the controller will cut off the load and
activate the fan to cool down the system.

*  Maintaining optimal temperature is critical, as high temperatures degrade battery life,
while low temperatures reduce performance and efficiency.
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The performance of a rechargeable battery is monitored and managed by a Battery Man-
agement System (BMS). A BMS plays a critical role in ensuring safe and efficient operation
by preventing three key conditions that can damage the battery or pose safety risks: over-
charging, over-discharging, and overheating.

Figure 4. Voltage divider sensor and temperature sensor.

To optimize charging and discharging, the BMS collects real-time data from volt-
age, current, and temperature sensors installed on the battery pack. Based on this data,
the controller makes informed decisions on managing the battery’s operation. Addition-
ally, cooling fans and heaters are integrated into the system to maintain optimal battery
performance under varying tropical environmental conditions.

Figure 5 illustrates the block diagram of the BMS technology used for monitoring
and analysis. Figure 6 illustrates the flowchart of the Battery Management System (BMS)
for the proposed work. The system begins with sensors measuring key battery param-
eters—voltage, current, and temperature—which are then transmitted to the controller.
Based on this input, the controller estimates the State of Charge (S0C) and makes deci-
sions accordingly.

Battery Pack

h 4 v

State of Charge

Thermal Manag nt 2 2
l | Estimation

l Display Data
y
Fan / Heater } Charge / Discharge

Figure 5. Block diagram of the BMS technology.

If the SoC drops below 20%, the controller disconnects the battery from the motor and
activates the charging circuit to begin recharging. Additionally, when the SoC falls below
40%, a beep alarm is triggered to notify the user that the battery needs to be charged soon.
For thermal management, if the battery temperature exceeds 45 °C, the controller activates
the cooling fan to reduce the temperature and protect the battery from thermal stress.
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Sense the Voltage, Current and Temperature of the
Battery
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Charging Circuit
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Figure 6. Flow Chart of the Proposed BMS.

4. Battery Mathematical Modelling

The internal resistance of the battery is denoted by R,, the output terminal voltage
by V4, and the open-circuit voltage (OCV) by Vpc. Vi and V;, represent the voltages across
the first and second RC networks, respectively, in the equivalent circuit model shown in
Figure 7 [29].

W:Voc—iXRO_(Vl+V2) )

_ (4 : _ Y DRy
V1—<C1—|—R1><z>exp<clxR2> Ry xi 3)

V2=<q+R2xi)exp< -1 )—szi @)

a CzXRz
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Figure 7. Battery Equivalent circuit model.

By integrating the current over time, the Coulomb Counting (CC) technique—also
known as the ampere-hour counting method—estimates the charging and discharging of
the battery. The State of Charge (SOC) is then calculated by dividing the measured charge
by the total available capacity. However, the accuracy of SOC estimation can be influenced
by the initial SOC value, which presents a potential source of error. This method provides
rapid results only when the initial SOC is accurately known [24-26]. The SOC estimation
using the CC method is expressed in the equation below:

1 titty
S0C(t7) = SoC(t) + = x / ibat(dt) x 100% 5)
t

n i

where C,, is the nominal capacity, ibat is the battery’s charge and discharge current, SoC(t)
is the estimated SoC at time ¢¢, and SoC(t;) is the initial SoC.

4.1. Battery Charge and Discharge
e Discharging Equation

Vy=Ae B _k—1 i E_Ri—k—1__i¢t ©)
b 7= 10 =i

¢  Charging Equation

Vp=Ae B KT it E-Ri—k—1__it 7
b i(t) —0.1g qg—i(t) () @
where A is the amplitude, K is the polarization constant, B is the inverse of the time
constant, R is the internal resistance, i is the battery current, i* is the filtered current, V; is
the battery voltage, g is the battery capacity, i(¢) is the instantaneous battery current, and E
is the battery’s constant voltage [39].

4.2. Electric Bicycle Motor Modelling

The following equations represent the DC electric motor of the electric bicycle, which
is mounted on the rear wheel:

V:i(t)R—irL%—ierw @®)
T—Kxi(t)—bxw— ©)

dt
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where V is the terminal voltage of the DC motor, | is the moment of inertia, w is the motor
speed, B is the viscous friction coefficient, T is the load torque, and L, R, and i represent the
armature inductance, armature resistance, and armature current, respectively [40].

4.3. Electric Bicycle Uphill Friction

Figure 8 illustrates the friction forces acting on an electric bicycle.
According to Newton’s Second Law, the motion of the bicycle can be expressed as:
d?x
Mﬁ:p—r—9.81—w (10)
where M is the total mass of the bicycle and rider, x is the distance (m), p is the propulsion
force, r is the rolling resistance force, and w is the wind resistance force [41][45].
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Figure 8. Friction forces acting on an electric bicycle.

5. Experimental Design and Simulation Results
5.1. Voltage Sensor

A simple voltage divider circuit was designed to measure the battery voltage (Figure 9),
using Ry =1k and R, =526 () (implemented with a linear trim potentiometer). The circuit
is configured such that the input voltage range of 0-14 V is scaled down so that the output
voltage to the Arduino does not exceed 5 V. The current is measured from the resistor
connect from the output of the voltage divider circuit. The formula for calculate current is

Ry

Vout =V; -_—
out in X R1+R2

(11)

[=-0n (12)
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R1

(@) (b)

Figure 9. (a) Voltage Divider Circuit (b) Simulation with Multisim software.

The temperature sensor used is the LM35 IC, which provides a measurement range
from —50 °C to 150 °C with a sensitivity of 10 mV/°C. Four temperature sensors are
installed, positioned on either side of the battery pack. The output pin of each sensor is
connected to the Arduino Uno controller for real-time monitoring. The protection circuit
disconnects the battery from the load using a 30 A relay. This relay safeguards the system
against overcharging, over-discharging, and overheating, and also controls the cooling fan
based on temperature readings. Figure 10 shows the protection relay switching circuit.
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Figure 10. Protection relay switching circuit.

5.2. Matlab Simulation: Coulomb Counting Method of SOC Estimation

For the MATLAB simulation, the Coulomb Counting (CC) method was implemented in
Simulink. Both charging and discharging processes were simulated. After 3 h, the estimated
battery SOC was 44%, compared to the actual SOC of 45.85%. As per the CC method

s0C(t) = soc(t—1)+ | t Lar (13)



Eng. Proc. 2025,1,0

14 of 22

Where SOC(t) is estimated SOC, SOC(t-1) is initial SOC (100% considered fully charged
battery), C is battery Capacity in Ah, and I is charge and discharge current. Figure 11 shows
the CC method of SOC estimation.
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Figure 11. CC method of SOC estimation.

Figure 12 shows the battery charge and discharge model developed in MAT-

LAB/Simulink for a simulation period of 3 h. The simulation results, presented in Figure 13,

illustrate the battery’s State of Charge (SOC) variation over time. The SOC decreases

steadily until it reaches 20%, at which point the charging cycle begins. During the charging

phase, the battery current becomes negative, indicating current flow into the battery. Once

charging commences, the SOC increases accordingly.
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Figure 12. Battery charge and discharge model in Simulink MATLAB.
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This simulation confirms that the control strategy effectively triggers charging when
the SOC reaches the lower threshold, thereby preventing deep discharge and protecting
battery health.

5.3. Hardware Simulation Results: Proteus

The battery State of Charge (SOC) estimation circuit was initially developed and
validated using the Proteus simulator prior to hardware implementation. This approach
allowed for thorough testing and optimization of the design before committing to physical
assembly. The simulated system modelled an electric bicycle powered by a 36 V motor and
incorporated key components, including an Arduino Uno microcontroller, a 20 x 4 LCD
display for data visualization, an LM35 temperature sensor for real-time thermal monitor-
ing, and an ACS712 current sensor for accurate current measurement during charging and
discharging cycles.

Additional components included a 12 V DC charger, a DC cooling fan for thermal
management, a 12 V dynamo motor for load simulation, strip connectors, a 1 k() fixed
resistor, a 1 k) potentiometer for calibration, a 0.1 uF capacitor for noise filtering, a
0.75 mm? twin-flex cable for secure power transmission, and a 7805 voltage regulator to
supply a stable 5 V to the control circuitry.

The designed Battery Management System (BMS) was capable of providing real-time
information on the battery’s State of Charge (SOC), State of Health (SOH), temperature,
and estimated remaining runtime. Multiple charging and discharging scenarios were simu-
lated to assess system performance under varying operating conditions. These tests verified
the accuracy of SOC estimation, the effectiveness of thermal monitoring, and the system’s
ability to initiate protective measures when thresholds were exceeded. By conducting these
simulations in Proteus, potential design flaws were identified and corrected early, ensuring
that the final hardware implementation would be both reliable and efficient.
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Figures 14 illustrate the various operational scenarios of the designed Battery Manage-
ment System (BMS) under different SOC, SOH, and temperature conditions. In Figure 14a,
the battery SOC is 90% with an SOH rating of Excellent; the charging circuit is OFF,
the temperature remains within the safe range, and the estimated remaining runtime is
approximately 157 min. Figure 14b also shows a battery SOC of 90%, but the temperature
has risen to 47 °C, exceeding the threshold, prompting the controller to switch OFF the
load and activate the cooling fan to protect the battery. In Figure 14c, the SOC has dropped
to 60% with an SOH rating of Good; the charging circuit remains OFF, the temperature is
normal, and the estimated remaining runtime is about 1 h 30 min. Figure 14d shows a SOC
of 30% with an SOH rating of Critical; since the SOC is below 40%, the controller triggers an
alarm to alert the user to recharge the battery soon, with only 22 min of runtime remaining.

In Figure 15a, the SOC reaches 20% and the SOH remains Critical; at this point,
the controller disconnects the motor and activates the charging circuit to begin recharging.
Figure 15b presents a similar case with SOC at 20% and SOH Critical, but here the battery is
in charging mode; when the temperature rises above 45 °C, the controller halts charging and
activates the cooling fan to bring the temperature back to the safe range. Finally, Figure 15¢c
depicts a condition where the SOC falls below 10% and the SOH is rated as Bad, indicating
the battery is near full depletion and requires immediate charging to prevent damage. These
cases demonstrate the BMS’s ability to monitor battery health, enforce protective measures,
and maintain safe operation under varying load, charge, and temperature conditions.

Overall, these scenarios demonstrate the system’s ability of proposed Sensor based
BMS to intelligently monitor and respond to changes in SOC, SOH, and temperature to
protect battery health and ensure operational safety.
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Figure 14. Hardware simulation result (a) At SOC = 90% and T<45 °C (b) At SOC = 90% and T>45 °C

(¢) At SOC = 60%>40% (d) At SOC = 30%<40%.
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Figure 15. Hardware simulation result (a) Charging-ON At SOC = 20% < 40% and T < 45 °C
(b) Charging-OFF at SOC = 20% < 40% and T > 45 °C (c) At SOC = 10%.

5.4. Sensor-Based BMS Hardware Implementation

The simulated Battery Management System (BMS) circuit was implemented on a real
electric bicycle, integrating various sensors to monitor and control battery performance.
The hardware setup embedded the sensor-based BMS into the electric bicycle to provide
real-time monitoring of key parameters such as voltage, current, temperature, and State of
Charge (SoC).

For temperature monitoring, the LM35 temperature sensor was installed to measure
the battery temperature during operation (Figure 16a). Voltage measurements of the electric
bicycle battery were also carried out as shown in Figure 16b. The complete hardware
model of the BMS for the electric bicycle, incorporating all sensors and control circuitry, is
illustrated in Figure 16c.
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Figure 16. (a) LM35 Temperature Sensor (b) Voltage measurement of battery in electric bicycle
(c) BMS display.

This work introduces a OCV and CC SoC estimation method based BMS, significantly
enhancing accuracy by reducing error margins between simulation and real-time data. The
developed design and system not only controls charging/discharging but also actively
manages battery temperature with fan control, beeping alerts, and intelligent charger
disconnection, thereby extending battery life. The inclusion of regenerative charging from
electrodynamometers offers an innovative solution for extending range and reducing
charging frequency, a feature rarely implemented in low-cost BMS for bicycles.

A fair comparison of battery performance with and without the proposed BMS is
presented in Table 3. By using widely available components such as Arduino Uno, LM35,
and ACS712 sensors, the proposed BMS offers a cost-effective and scalable solution suitable
for large-scale E-Bike adoption, especially in developing regions. A clear validation of
Simulation and Hardware Consistency. Measurement results demonstrated close alignment
between MATLAB simulation and real-time hardware outputs (44% vs. 45.85% SoC),
proving the reliability and practical applicability of the design.

After the implementation of the battery management system (BMS), the lifespan of
the battery is significantly longer compared to one without it, while also ensuring that the
battery operates within a safe operating range. The proposed BMS enhances battery safety,
longevity, efficiency, and environmental friendliness compared to batteries without a BMS.
This directly contributes to improved performance, sustainability, reliability, protection,
and user comfort.
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Table 3. Comparison of Battery Performance: Without BMS vs. With Proposed BMS.

. . . . Benefit & Contribution
Aspect Bicycle Without BMS Bicycle with Proposed BMS of Proposed BMS
High risk of overheating, Actively monitors voltage, Enhances safety and
Safety overcharging, and deep current, and temperature to reduces fire/explosion
discharging prevent unsafe conditions risks
Cells operate at different Actively balances cells Extends battery life
Cell Balancing charge levels, leading to to ensure uniform charging/ and maintains consistent
reduced efficiency discharging performance
Unstable output, poor Stable and optnmzed. Reliable power delivery
Performance - performance under varying o
efficiency under load i, for real-world applications
load conditions
. Shortened due to S.1gn.1f1.car1tly e.xtended by Cost savings through |
Battery Life frequent overcharging/  maintaining optimal operating .
. . oo onger usable lifespan
deep discharging conditions
Monitoring & No real-time data Con’fmu'ous rgal—tlme Supports predictive
. monitoring with fault maintenance and reduces
Control or fault detection . . .
detection and protection downtime

Environmental and
Sustainability Impact

Contributes to
sustainability and green
engineering practices

More frequent
replacements
increase e-waste

Longer lifespan reduces
frequency of disposal/
replacement

User Confidence

Uncertainty due to
lack of protection
features

Builds trust in battery
reliability and performance

Provides clear operational
limits and fault alerts

6. Conclusions

This research successfully demonstrates the design and implementation of a sensor-
based Battery Management System (BMS) for an electric bicycle, integrating LM35 temper-
ature sensors, voltage and current sensors, and an Arduino Uno controller to estimate State
of Charge (SoC), State of Health (SoH), operating temperature, and remaining runtime.
The system was designed and tested in simulation environments such as Proteus and
Simulink before being implemented in hardware, achieving effective real-time monitoring
to enhance battery safety and performance. Despite minor challenges such as delayed com-
ponents and sensor interference, the prototype met its functional objectives and validated
the feasibility of the proposed approach. As a future scope, the system can be enhanced
by integrating IoT-based wireless communication for real-time remote monitoring and
data logging, enabling advanced analytics and improved decision-making for electric
mobility applications.

Author Contributions: Conceptualization, P.R. and B.P.S.; methodology, P.R. and B.P.S.; software,
PR validation, PR., B.PS. and S.S.; investigation, PR. and B.P.S.; writing—original draft preparation,
PR. and B.P.S.; writing—review and editing, B.P.S. and S.S.; supervision, S.S. and B.P.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: I sincerely thank the School of Electrical and Electronic Engineering (SEEE) at
Fiji National University for their support and environment throughout this research work. Their
facilities and resources were invaluable to its successful completion.

Conflicts of Interest: The authors declare no conflicts of interest.



Eng. Proc. 2025,1,0 21 of 22

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Harwardt, K.; Jung, ].H.; Beiranvand, H.; Nowotka, D.; Liserre, M. Lithium-Ion Battery Management System with Reinforcement
Learning for Balancing State of Charge and Cell Temperature. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade,
Serbia, 25-29 June 2023; pp. 1-6.

Kumar, R.R; Bharatiraja, C.; Udhayakumar, K.; Devakirubakaran, S.; Sekar, K.S.; Mihet-Popa, L. Advances in batteries, battery
modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV
applications. IEEE Access 2023, 11, 105761-105809.

Sasirekha, P.; Sneka, E.; Velmurugan, B.; Hameed, M.S; Sivasankar, P. A Battery Monitoring System based on IoT for Electric
Vehicles. In Proceedings of the 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India, 23-25 January 2023; pp. 204-210.

Chehade, A.A.; Hussein, A.A. A collaborative Gaussian process regression model for transfer learning of capacity trends between
li-ion battery cells. IEEE Trans. Veh. Technol. 2020, 69, 9542-9552.

Hu, X.; Che, Y,; Lin, X.; Onori, S. Battery health prediction using fusion-based feature selection and machine learning. IEEE Trans.
Transp. Electrif. 2020, 7, 382-398.

Ananthraj, C.R.; Ghosh, A. Battery management system in electric vehicle. In Proceedings of the 2021 4th Biennial International
Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbeai, India, 15-16 January 2021; pp. 1-6.

Kim, S.W,; Lee, G.M. Estimating increase of electric energy according to penetration of electric vehicles at the Jeju Island in Korea.
In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan,
Republic of Korea, 14 June 2016; pp. 947-949.

Totev, V.; Gueorgiev, V. Batteries of electric vehicles. In Proceedings of the 2021 13th Electrical Engineering Faculty Conference
(BulEF), Varna, Bulgaria, 8-11 September 2021; pp. 1-6.

Li, S.; Zhang, C. Study on battery management system and lithium-ion battery. In Proceedings of the 2009 International
Conference on Computer and Automation Engineering, Bangkok, Thailand, 8-10 March 2009; pp. 218-222.

Shareef, H.; Islam, M.M.; Mohamed, A. A review of the state-of-the-art charging technologies, placement methodologies, and
impacts of electric vehicles. Renew. Sustain. Energy Rev. 2016, 64, 403—420.

Khan, M.A; Zeb, K.; Sathishkumar, P; Ali, M.U.; Uddin, W.; Hussain, S.; Kim, H.]. A novel supercapacitor/lithium-ion hybrid
energy system with a fuzzy logic-controlled fast charging and intelligent energy management system. Electronics 2018, 7, 63.
Manzetti, S.; Mariasiu, F. Electric vehicle battery technologies: From present state to future systems. Renew. Sustain. Energy Rev.
2015, 51, 1004-1012.

Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchis, B. Comparison of different battery types for electric vehicles. IOP
Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058.

Umair Ali, M.; Hussain Nengroo, S.; Adil Khan, M.; Zeb, K.; Ahmad Kamran, M.; Kim, H.J. A real-time simulink interfaced
fast-charging methodology of lithium-ion batteries under temperature feedback with fuzzy logic control. Energies 2018, 11, 1122.
Ralon, P; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K. Electricity Storage and Renewables: Costs and Markets to 2030; International
Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; pp. 154-164.

Che, Y,; Deng, Z.; Li, P,; Tang, X.; Khosravinia, K.; Lin, X.; Hu, X. State of health prognostics for series battery packs: A universal
deep learning method. Energy 2022, 238, 121857.

Che, Y.; Deng, Z.; Lin, X.; Hu, L.; Hu, X. Predictive battery health management with transfer learning and online model correction.
IEEE Trans. Veh. Technol. 2021, 70, 1269-1277.

Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, M. A study on the open circuit voltage and state of charge
characterization of high capacity lithium-ion battery under different temperature. Energies 2018, 11, 2408.

Tang, X.; Wang, Y.; Chen, Z. A method for state-of-charge estimation of LiFePO4 batteries based on a dual-circuit state observer. J.
Power Sources 2015, 296, 23-29.

Coleman, M.; Lee, C.K,; Zhu, C.; Hurley, W.G. State-of-charge determination from EMF voltage estimation: Using impedance,
terminal voltage, and current for lead-acid and lithium-ion batteries. IEEE Trans. Ind. Electron. 2007, 54, 25502557 .

Bao, Y.; Dong, W.; Wang, D. Online internal resistance measurement application in lithium ion battery capacity and state of
charge estimation. Energies 2018, 11, 1073.

Lu, L; Han, X;; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J.
Power Sources 2013, 226, 272-288.

Dini, P; Colicelli, A.; Saponara, S. Review on modeling and soc/soh estimation of batteries for automotive applications. Batteries
2024, 10, 34.

Rivera-Barrera, J.P.,; Mufioz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC estimation for lithium-ion batteries: Review and
future challenges. Electronics 2017, 6, 102.



Eng. Proc. 2025,1,0 22 of 22

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Saji, D.; Babu, P.S.; Ilango, K. SoC estimation of lithium ion battery using combined coulomb counting and fuzzy logic method. In
Proceedings of the 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology
(RTEICT), Bangalore, India, 17-18 May 2019; pp. 948-952.

Vattem, S.; Gorantla, S.R. A critical review on available methods for estimating the present state-of-charge of the batteries used in
EV/HEV. In Proceedings of the 2023 International Conference on Advanced & Global Engineering Challenges (AGEC), Kakinada,
India, 23-24 June 2023; pp. 26-31.

Jiang, B.; Dai, H.; Wei, X. A cell-to-pack state estimation extension method based on a multilayer difference model for series-
connected battery packs. IEEE Trans. Transp. Electrif. 2021, 8, 2037-2049.

Rao, PN.; Lavanya, V.; Manasa, D.; Boggavarapu, S.; Soni, B.P. Battery models and estimation techniques for energy storage
systems in residential buildings. J. Mod. Technol. 2024, 1, 47-58.

Khanum, F; Louback, E.; Duperly, F,; Jenkins, C.; Kollmeyer, PJ.; Emadi, A. A Kalman filter based battery state of charge
estimation MATLAB function. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago,
IL, USA, 21-25 June 2021; pp. 484-489.

Taborelli, C.; Onori, S. State of charge estimation using extended Kalman filters for battery management system. In Proceedings
of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 17-19 December 2014; pp. 1-8.

Zhang, Z.; Jiang, L.; Zhang, L.; Huang, C. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended
Kalman filter for electric vehicles. J. Energy Storage 2021, 37, 102457.

Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A hybrid neural network model with improved input for state of charge estimation of
lithium-ion battery at low temperatures. Renew. Energy 2022, 198, 1328-1340.

Makuwatsine, T.T.; Gill, A.; Mishra, PK. Battery Pack Modeling for the Analysis of Battery Temperature and Current Control.
In Proceedings of the 2023 3rd Asian Conference on Innovation in Technology (ASTANCON), Ravet, India, 25-27 August 2023;
pp- 1-6.

Nerkar, M.; Mukherjee, A.; Soni, B.P. A review on optimization scheduling methods of charging and discharging of EV. AIP Conf.
Proc. 2022, 2452, 040002.

Blazek, V.; Pergl, I; Kedron, P; Piecha, M.; Bajaj, M. Effect of ambient temperature on EV charging curves after seven years of
EV operation. In Proceedings of the 2023 23rd International Scientific Conference on Electric Power Engineering, Brno, Czech
Republic, 24-26 May 2023; pp. 1-5.

Bunyamin, WM.H.W,; Baharom, R.; Munim, W.N.W.A. Wireless Battery Charger with Power Factor Correction for Electric Bike.
In Proceedings of the 2023 IEEE Industrial Electronics and Applications Conference (IEACon), Penang, Malaysia, 6-7 November
2023; pp. 139-144.

Baharom, R.; Muhamad, S.M.; Munim, WIN.W.A; Radzi, M.A.M.; Hashim, N.; Bunyamin, WM.H.W.; Shaffee, S.N.A. Energy
Analysis Between Wire-Connected and Wireless Battery Charger Systems for Electric Bike. In Proceedings of the 2023 IEEE
Industrial Electronics and Applications Conference (IEACon), Penang, Malaysia, 6-7 November 2023; pp. 134-138.

Guna, A.; Kumari, S.; Sivapriya, G. State of Charge based Charging Controller with Temperature monitoring system for Lithium
ion Battery in Electric Vehicle. E3S Web Conf. 2023, 399, 01008.

Hung, N.B.; Lim, O. A simulation and experimental study of dynamic performance and electric consumption of an electric
bicycle. Energy Procedia 2019, 158, 2865-2871.

Yildiz, A.B. Electrical equivalent circuit based modeling and analysis of direct current motors. Int. J. Electr. Power Energy Syst.
2012, 43, 1043-1047.

Hung, N.B.; Jaewon, S.; Lim, O. A study of the effects of input parameters on the dynamics and required power of an electric
bicycle. Appl. Energy 2017, 204, 1347-1362.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction
	Literature Review
	Electric Bicycles and Battery Management Systems for Pacific Island Conditions
	Battery Technologies for EVs
	SOC Estimation
	Direct Measurements
	Book-Keeping Estimations
	Model-Based Methods

	Thermal Management
	Charging Methods Used for EV and E-Bike Batteries

	Sensor Integration in the Design of a Battery Management System
	Battery Charging Control
	Thermal Management

	Battery Mathematical Modelling
	Battery Charge and Discharge
	Electric Bicycle Motor Modelling
	Electric Bicycle Uphill Friction

	Experimental Design and Simulation Results
	Voltage Sensor
	Matlab Simulation: Coulomb Counting Method of SOC Estimation
	Hardware Simulation Results: Proteus
	Sensor-Based BMS Hardware Implementation

	Conclusions
	References

