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Abstract

In the expansion of Industry 4.0, many automation processes are being enhanced as means
of accomplishing higher productivity goals. With the prospect of new achievable objec-
tives, the demand for faster and more reliable resources processing methods are also
needed. Similarly, machining processes have also been improved with the development
of IoT devices by streamlining operations, enabling predictive maintenance, and provid-
ing real-time data for better decision-making, collaborating with such productivity levels.
For instance, in metal milling, IoT-based sensors techniques are being developed and
proved efficient in increasing speed and reliability, whereas reducing system invasiveness
and complexity, which grants more profitability. The present paper proposes a real-time
metal roughness average (Ra) analysis method based on Acoustic Emission (AE), which
indirectly estimates roughness through signal processing and feature extraction of the EA
signal through Power Spectral Density (PSD) evaluation. The experimental setting con-
sists of a steel workpiece in which straight lines were milled with four distinct roughness
levels (6 um, 12 um, 18 pm and 24 um, produced by defined milling parameters), and the
method was able to estimate the Ra with error under 7%. This work aims to contribute to
the real-time monitoring of surface roughness in alignment with Industry 4.0 require-
ments, by demonstrating the effectiveness of IoT-based solutions, and the potential of
Acoustic Emission in machinery sensing and process automation.

Keywords: milling; average roughness; real time applications; acoustic emission sensors;
IoT sensor

1. Introduction

The rise of the 4.0 industrial revolution fostered the development of strategies to im-
prove the quality of industrial processes. One of them is Tool Condition Monitoring
(TCM), which is the analysis of machine tool health by, for example, extracting signals
and identifying patterns that indicate possible anomalies that could prejudice the machin-
ing process. Acoustic Emissions (AE) are described as the phenomenon of acoustic wave
propagation caused by the sudden release of stress within a material subjected to
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deformation, cutting, or fracturing [1], and can be employed in TCM through its sensing.
AE signals are widely used mainly because of their ability to allow the detection of large
energy discharges during plastic deformation, supporting close monitoring of cuts made
in materials in the milling process [2]. In addition, the collected signals can also give in-
formation about the milling process, allowing the extraction of key performance indica-
tors such as the surface finish quality of the fabricated products [3]. Surface roughness is
considered a critical factor in evaluating the milling process, due to its inherent connection
to factors such as functional performance, durability, and assembly compatibility of ma-
chined components [4]. Therefore, evaluating real-time surface roughness is important to
improve process quality, which is paramount in the 4.0 industry context.

Approaches to analyse and estimate surface roughness were made by acquiring im-
ages and using them as inputs in Convolutional Neural Networks (CNNs) to predict sur-
face roughness with a 3.6% mean error [5], and also using sound signals transformed into
Mel-Frequency Cepstral Coefficients (MFCCs) in machine learning algorithms such as
CNNs, Temporal Convolutional Networks (TCNs), Random Forests (RFs), and Support
Vector Machines (SVMs) to classify the MFCC representations into predefined roughness
categories, with the developed models successfully delimiting discriminative patterns [6].
Moreover, features extracted from real-time data acquired by a rotating dynamometer
and an accelerometer were used to predict surface roughness. Real-time monitoring en-
hanced the surface roughness analysis accuracy by a mean of 2.53% [7].

Hence, considering the feasibility of analysing surface roughness with real-time mon-
itoring, aligned with the effectiveness of AE signals in TCM, this research aims to develop
a real-time AE-based metal roughness average (Ra) analysis method that could indirectly
predict roughness through the AE signal processing and feature extraction. The experi-
ments were conducted on a steel workpiece, on which straight lines were milled with one
of four distinct theoretical roughness levels (6 pm, 12 um, 18 pm, and 24 pm), produced
by predefined milling parameters. Moreover, the signal processing and algorithm were
developed in the Matlab software, with classification of the four roughness levels was
achieved using features extracted from the AE signals of the milled lines, with the esti-
mated Ra presenting an error lower than 10%. This work is innovative because it presents
a method that analysed signals collected from an IoT sensor that has not been broadly
used in other research and didn’t use machine learning models to perform predictions,
which reduced computational burden. It presents contributions to real-time roughness
monitoring that align with Industry 4.0 requirements.

2. Methodology
2.1. Experimental Setup

The micromilling tests were carried out on a ROMI vertical CNC machining center
model D600. A high-speed spindle NSK Nakanishi model NR3060S with a maximum ro-
tation speed of 60,000 rpm was mounted on the machine tool, where a 500 um diameter,
solid carbide, TiNAl-coated, two cutting edges and helical flutes end mill was attached.
Straight lines were milled in a 6 mm thickness steel workpiece, while the data was sam-
pled at 1.11 MHz through a piezoelectric wireless AE sensor, coupled to the side of the
workpiece and perpendicular to the milling spindle as in Figures 1 and 2.
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Figure 1. Acoustic Emission acquisition test bench.
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Figure 2. Steel workpiece after experimentation.

2.2. Theoretical Background

The roughness average of the surface in each line is dictated by either the end mill
geometry and the process parameters, such as the milling feed rate, spindle speed, and
cut depth [8,9]. By altering said parameters, it is possible to create different roughness
values and AE responses, which may be processed and used as classification features [10].
The theoretical values were calculated using Equations (1) and (2) [11].

Rpax = fr - tan(x") (1)

f; - tan(x"

Re = T ¥ tan)]

@)

where Ry, is the maximum roughness, R, is the roughness average, fz is the feed
rate and x' is the secondary cutting edge angle.

2.3. Roughness Average Estimation Method with Acoustic Emissions

The IoT sensor stored the raw signal as vectors and then sent them to the computer
via wi-fi, where they are converted into .mat files. In order to extract a characterizing fea-
ture, a PSD analysis was conducted through transforming the time-domain signal vector
to the frequency domain using the Discrete Fourier Transform (DFT), followed by filtering
with fifth order band-pass Butterworth filters.
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The chosen parameter to estimate roughness levels was the RMS within selected fre-
quency bands. The criteria to select a band is that it must contain a concentrated amount
of energy, so that it has a larger signal-to-noise and carries relevant information, and also
presents a distinct shape for each roughness level, enabling their identification. After sev-
eral tests, it was noticed that the chosen parameter (band RMS) behaves as an S curve as
the theoretical surface roughness increases, as represented in Figure 4.
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Figure 4. Typical RMS of a selected band.

The presented graphic in Figure 4 refers to the RMS of the full length signal vector,
thus, in order to approach real time condition monitoring, the next step was to analyse
time sections of the signal and verify if they behave similarly. Each signal was then seg-
mented in 50, 20, 10, 5 and 1 ms windows (with an overlap of consecutive windows of 5%)
and calculated the RMS of the 40-65 kHz band of each window individually.

3. Results and Discussion

The resulting filtered RMS of the windows were then organized into the graphics in
Figure 5, and the Normalized Root Mean Squared Error (NRMSE) in Table 1. It was ob-
served that the segments RMS’s deviate around the RMS of the signal as a whole, and for
bigger windows the more similar to it. This behaviour shows a tradeoff between the esti-
mation method’s accuracy, system burden and the speed at which the information is up-
dated, since larger windows increases accuracy but reduces the data refresh rate, whereas
higher sampling rate or a moving RMS window demands superior computational power.
Also, it was noted that higher average roughness levels, also produce greater NRMSE,
suggesting that this technique may have limitations in non micro milling operations.
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Figure 5. Filtered windows RMS for each size: (a) 1 ms; (b) 5 ms; (c) 10 ms; (d) 20 ms; (e) 50 ms.

Table 1. Roughness estimation RMS windows normalized root mean squared error (NRMSE).

RMS (‘IZ;;ldow 6 um 12 um 18 um 24 um
50 0.08% 0.42% 0.59% 0.97%
20 1.23% 3.60% 5.10% 6.75%
10 2.93% 7.74% 10.88% 14.15%
5 6.39% 16.51% 23.38% 30.62%
1 17.20% 47.24% 70.43% 99.18%

4. Conclusions

This work presents a method for real-time metal roughness average analysis based

on acoustic emission, aimed for Industry 4.0 IoT applications. The experimental setup was
made on a vertical CNC machining center, where a steel workpiece was milled and the
operation’s acoustic waves were collected through a wireless sensor and sent for pro-
cessing and PSD analysis in the Matlab software. The results validate the method’s
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capability of accurately estimating a surface’s average roughness in real time scenarios
(less than 7% NRMSE in some setups), with the benefits of lower computation require-
ments when compared to machine learning methods and the modularity benefits of IoT
devices.

The information presented in this article aims to corroborate with Industry 4.0 devel-
opment by contributing with a less complex, modular, faster and reliable approach,
that collaborates with improved data collection and better decision-making targeting
more economically and ambientally viable solutions.

Researchers of similar worklines are encouraged to test different experimental setups
such as different machinery, workpiece materials and shapes, sensory systems and in the
presence of factory floor noise, and it is also suggested a study of these methods optimi-
zation in factory applications.
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