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Abstract 

Due to their limited mobility and vocal limitations, paralysed individuals frequently 

struggle with communication and health monitoring. This work introduces an Internet of 

Things (IoT)-based system that combines continuous health monitoring with a sensor-

based smart glove to enhance patient care. The glove detects falls, sends emergency mes-

sages via hand gestures, and monitors vital indicators, including SpO2, heart rate, and 

body temperature. The smart glove uses Arduino and ESP8266 modules with MPU6050, 

MAX30100, LM35, and flex sensors for these functions. MPU6050 detects falls precisely, 

while MAX30100 and flex sensors measure gestures, SpO2, heart rate, and body tempera-

ture. The flex sensor interprets hand motions as emergency alerts sent via Wi-Fi to a cloud 

platform for remote monitoring. The experimental results confirmed the superiority and 

validated the efficacy of the suggested module. Scalability, data logging, and real-time 

access are guaranteed by IoT integration. The actual test cases were predicted using a 

Support Vector Machine, achieving an average accuracy of 81.98%. The suggested module 

is affordable, non-invasive, easy to use, and appropriate for clinical and residential use. 

The system meets the essential needs of disabled people, enhancing both their quality of 

life and carer connectivity. Advanced machine learning for dynamic gesture detection and 

telemedicine integration is a potential future improvement. 

Keywords: Internet of Things (IOT); smart glove; sensors; gesture recognition; health 

monitoring; support vector machine 

 

1. Introduction 

The IoT-based healthcare system for paralysis patients with paralysis introduces an 

innovative solution to transform the care and rehabilitation experience for individuals 

with paralysis [1]. Paralysis impairs muscle movement in parts or all of the body and 

poses serious challenges regarding mobility, independence, and overall quality of life [2]. 

Unfortunately, traditional healthcare methods often fall short—especially in remote or 

underserved regions—where continuous care, physical therapy, and access to specialised 

rehabilitation are limited [3]. With recent technological progress, the Internet of Things 

(IoT) has emerged as a game-changer in the healthcare sector. IoT enables real-time health 

monitoring, remote medical support, and personalised treatment through interconnected 

smart devices [3]. These devices, equipped with sensors and linked via communication 
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networks and cloud platforms, can continuously gather and analyse patient data [2]. It 

allows for the remote tracking of vital signs, muscle responses, and rehabilitation pro-

gress—helping healthcare providers deliver more effective and timely interventions [2]. 

Such systems improve patient outcomes and reduce the burden on caregivers and medical 

staff. At the heart of this system is a patient monitoring setup, where sensors continuously 

collect physiological data. These sensors are directly attached to the patient and are re-

sponsible for detecting and transmitting real-time information. The complete system in-

cludes sensor networks, display modules, wireless communication units, and various 

supporting technologies that provide comprehensive, round-the-clock care. 

The motivation of this work stems from the communication and health-monitoring 

challenges faced by paralysed individuals due to their limited mobility and vocal impair-

ments. These limitations make it difficult for them to convey emergencies, receive timely 

medical assistance, and maintain continuous health tracking. By integrating IoT technol-

ogy with a smart glove capable of monitoring vital signs, detecting falls, and sending 

emergency alerts through simple hand gestures, the system aims to provide an affordable, 

non-invasive, and user-friendly solution that enhances patient safety, quality of life, and 

caregiver connectivity in both clinical and home settings. 

The main contributions of this research are mentioned below. 

‐ Development of an IoT-based smart glove system that integrates continuous health 

monitoring and gesture-based emergency communication for paralysed individuals. 

‐ Implement multiple sensors with Arduino and ESP8266 for fall detection, SpO2, heart 

rate, body temperature measurement, and gesture recognition. 

‐ Real-time data transmission to a cloud platform for remote monitoring, ensuring 

scalability, data logging, and accessibility. 

‐ Application of a Support Vector Machine (SVM) model for gesture prediction, 

achieving an average accuracy. 

‐ Deliver an affordable, user-friendly solution suitable for clinical and home environ-

ments, improving patient quality of life and caregiver connectivity. 

2. Existing Works 

The literature review for an IoT-based healthcare system for paralysis patients with 

paralysis explores the wide range of technological innovations and research efforts that 

focus on improving rehabilitation and patient care using IoT. These studies provide in-

sight into the current landscape and highlight the opportunities and limitations that guide 

the development of more effective and accessible systems. This review brings together 

various works that have contributed to the understanding and advancement of IoT appli-

cations in healthcare, particularly for individuals with paralysis. An intelligent rehabilita-

tion glove enhanced by IoT technology to assist patients recovering hand function has 

been introduced in [4]. The glove has integrated sensors and actuators that monitor ther-

apeutic movements and deliver personalised exercise regimens. The study highlights the 

glove’s potential to improve engagement, track recovery trends, and support individual-

ised therapy. The practicality of using wearable devices for home-based hand rehabilita-

tion, especially in stroke survivors, is suggested in [5]. The system used motion sensors 

and interactive software to guide and evaluate therapeutic exercises. Results showed that 

patients found the devices easy to use and comfortable. The work in [6] focused on how 

technology can enhance patient motivation during stroke rehabilitation. The study looked 

at tools such as wearable devices, virtual reality platforms, and mobile apps designed to 

increase patient engagement. This work offered real-time feedback, gamified experiences, 

and tailored exercise plans, making rehabilitation more interactive and enjoyable, thus 

improving therapy compliance. The broader trends of IoT applications in stroke 
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rehabilitation have been discussed in [7]. It details how wearable sensors and smart sys-

tems enable the real-time tracking of vital signs and therapy progress. In [8], a soft robotic 

glove was developed to help patients regain hand mobility. Built with flexible materials 

and actuators, the glove supported passive and active hand movements. It offered adapt-

able support aligned with the patient’s therapy needs, promoting muscle strength and 

movement coordination. The work [9] examined the acceptance and usability of wearable 

and robotic rehabilitation technologies. The findings revealed that successful integration 

of these devices depends not only on their technical capabilities but also on user experi-

ence—ease of use, comfort, and affordability were significant factors influencing long-

term adoption. Another work in [10] developed a prototype smart glove to support dex-

terous hand rehabilitation. The glove integrated actuators and motion sensors to guide 

patients through hand exercises with real-time feedback. Clinical trials indicated improve-

ments in hand strength and coordination, suggesting strong potential for use in therapy 

routines. An IoT-based rehabilitation system that allowed real-time tracking of patient 

vitals, movement patterns, and therapy results has been proposed in [11]. The system lev-

eraged cloud computing and wearable devices to enable remote patient monitoring, em-

powering healthcare providers to make informed, timely decisions regarding patient care. 

A personalised IoT rehabilitation system that targeted upper limb movement in patients 

was suggested in [12]. With wearable sensors and actuators, the system offered real-time 

feedback and therapy adjustments tailored to each user. The work in [13] explored how 

wearable IoT devices could support stroke rehabilitation outside hospital environments. 

Their research demonstrated that real-time monitoring of vital signs and therapy progress 

allows for early detection of issues, timely intervention, and better patient outcomes. 

Current IoT-based rehabilitation systems for paralysis patients with paralysis show 

promise but face several limitations. Most studies are short-term, with small and non-

diverse samples, limiting generalizability. Personalisation is often static, with little real-

time adaptation to patient progress, and usability factors like comfort, affordability, and 

long-term adherence are underexplored. Critical aspects such as energy efficiency, data 

privacy, interoperability with clinical systems, and cost-effectiveness are rarely addressed. 

Additionally, there is limited focus on multimodal sensing, algorithm transparency, and 

deployment in low-resource settings, along with a lack of open datasets for reproducibil-

ity. 

Gaps in multimodal sensing, algorithm transparency, and deployment in low-re-

source settings further limit their scalability and inclusivity. Addressing these issues re-

quires more robust, adaptive, and accessible solutions supported by standardised evalu-

ation protocols and open datasets. 

The prime novelty points of this work include: 

‐ Integration of fall detection, vital sign monitoring, and gesture-based emergency 

alerts into a single IoT-enabled smart glove. 

‐ Multi-sensor fusion (MPU6050, MAX30100, LM35, flex sensors) for comprehensive, 

real-time health and safety tracking. 

‐ Cloud-based remote monitoring with data logging for scalability and continuous 

caregiver access. 

‐ Application of SVM for dynamic gesture recognition with reasonable accuracy. 

‐ Low-cost, non-invasive, and portable design suitable for clinical and home use. 

3. Proposed Model 

The experimental apparatus comprises a glove outfitted with various sensors, includ-

ing flex sensors, inertial measurement units (IMUs), and pressure sensors, intended to 

record finger flexion, wrist orientation, and additional motion attributes. These sensors 
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produce signals that correlate to physical movements, which are subsequently directed 

through an interface circuit for signal conditioning. This phase guarantees noise attenua-

tion, appropriate scaling, and analog-to-digital conversion as required, facilitating precise 

and accurate data capture. The processed sensor data is gathered using a microcontroller 

or data collection unit, which organizes and transmits the values to a linked computer for 

subsequent analysis. A simple schematic of the proposed model is shown in Figure 1. 

Upon transfer, the data is subjected to preprocessing, encompassing normalisation to 

eliminate scale discrepancies, extracting pertinent statistical and temporal aspects, and, if 

required, reducing dimensionality to improve computing performance. The curated da-

taset is subsequently provided to a Support Vector Machine (SVM) classifier designed to 

differentiate between various gestures or movements. The system generates gesture labels 

instantaneously, which can be exhibited, archived, or utilised for the operation of external 

devices such as robotic arms or virtual reality interfaces. The process includes a calibration 

phase before actual trials, followed by performance evaluation utilising accuracy 

measures, confusion matrices, and real-time tests to ascertain the reliability and respon-

siveness of the system. 

The sensor workflow of the proposed model is depicted in Figure 2. This work has 

three main components: preprocessing, feature extraction, and classifier optimisation. 

First, the raw sensor data from flex sensors, accelerometers, and gyroscopes should be 

preprocessed for consistency and noise reduction. This involves normalising all read-

ings—either scaling them to a range between 0 and 1 or applying z-score normalisation—

and using a low-pass filter, such as a Butterworth or moving average filter, to remove 

high-frequency noise. Continuous data streams should then be segmented into fixed-size 

windows, for example, 200 ms per segment with 50% overlap, ensuring uniform input 

length for feature extraction. 

 

Figure 1. Simple schematic of the proposed model. 

From each window, a set of discriminative features should be extracted. For flex sen-

sors, this includes the mean, variance, and slope of bend angle changes. Accelerometer 

data can contribute statistical measures such as mean and standard deviation, and derived 

metrics like signal magnitude area (SMA), pitch, and roll. Gyroscope data should provide 

angular velocity measures, including mean, standard deviation, and signal energy. Op-

tionally, frequency-domain features such as the magnitudes of the first 5–10 FFT 
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coefficients can be included to capture gesture dynamics, resulting in a final feature vector 

of around 30–50 features per gesture. 

The SVM should be configured with an RBF kernel to handle the nonlinear patterns 

typical in gesture data. Initial hyperparameters can include a penalty parameter L = 10 for 

balanced margin control, with k set to “scale” for automatic kernel width adjustment. If 

the gesture dataset is imbalanced, a `balanced` class weight setting can help improve per-

formance across classes. A one-vs-one multi-class strategy is recommended for sign lan-

guage gestures. Model training should use a 70–15–15 split for training, validation, and 

testing, combined with 5-fold cross-validation to fine-tune L and k within ranges such as 

L = {0.1, 1, 10, 100} and k = {0.001, 0.01, 0.1, 1}. 

Finally, for deployment, the trained SVM model can be exported as a ‘.pkl’ file using 

scikit-learn and integrated into either the glove’s microcontroller or a connected 

smartphone application. The preprocessing pipeline must be replicated precisely during 

deployment to ensure consistency between training and inference. This approach offers a 

lightweight yet powerful recognition system well-suited for real-time sign language in-

terpretation. 

 

Figure 2. The sensing workflow of the proposed model. 

4. Results and Discussion 

The glove uses built-in sensors to determine the wearer’s temperature, heart rate, and 

hand gestures. Arduino is used to gather and communicate these sensor readings, after 

which Python is used to analyse the data for testing. The SVM classifier trains a machine 

learning model for data like gesture, heart rate, and temperature. Whether the condition 

is true or not is predicted by the result. A comparative analysis of SVM efficiency across 

different observation test cases for the proposed experiment is presented in Table 1. An 

efficiency of 83.33% is obtained in Test Case 1 with 44 true positives, 8 false positives, 7 

false negatives, and 31 true negatives. With an efficiency of 81.65%, Test Case 2 displays 

50 true negatives, 12 false positives, 8 false negatives, and 39 true positives. With an 
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efficiency of 76.98%, Test Case 3 shows 45, 9, 10, and 46 as true positives, false positives, 

false negatives, and true negatives, respectively. Subsequent test cases show similar pat-

terns. The calculated average efficiency for all situations is 81.98%. 

Table 1. Comparative analysis of SVM efficiency on different observation test cases. 

Observa-

tion/Test Case 
True Positive False Positive 

False Nega-

tive 
True Negative Efficiency 

1 44 8 7 31 83.33% 

2 39 12 8 50 81.65% 

3 45 9 10 46 82.73% 

4 39 10 13 55 80.34% 

5 59 14 11 42 80.16% 

6 47 9 11 54 83.47% 

7 45 10 8 38 82.18% 

5. Comparison 

The current work, designed for emergency hand gesture communication alongside 

vital sign monitoring, stands out from previous studies that primarily concentrated on a 

single functionality. Gesture-only systems, such as those by [14–16], and [18], achieved 

notably higher accuracies ranging from 88.97% to nearly 98%, owing to their optimization 

for dynamic sign language or gesture detection using dedicated sensors like flex sensors, 

IMUs, and textile-based capacitive sensors, often coupled with convolutional neural net-

works. In contrast, health-focused works like [17] and [19] emphasized rehabilitation or 

vital sign monitoring, prioritizing reliability and precision over classification accuracy, 

and did not attempt gesture-based interaction. While the current work reports a compar-

atively lower accuracy of 81.98%, this trade-off arises from the dual-purpose integration 

of gesture recognition and biomedical sensing, which introduces greater complexity and 

sensor noise. Unlike the specialized systems, it addresses a broader spectrum of user 

needs, making it more versatile for real-world emergency communication and health 

monitoring scenarios, though with some compromise in recognition performance. 

Table 2. Comparative analysis of existing works and the proposed approach. 

Works Aim Sensors Used Algorithm/Classifier Accuracy 

[14] 
To convert Bangla sign language to 

spoken Bangla text 

Flex sensors, gyroscope, ac-

celerometer 

Convolutional neural net-

work 
88.97% 

[15] 
To capture and classify dynamic hand 

gestures 

Flex sensors, force sensors, 

inertial measurement unit 

(IMU) sensor 

Convolutional neural net-

work 
90% 

[16] 
To develop dynamic sign language ges-

ture detection 
Accelerometers, gyroscopes DT, SVM, KNN, RF ~98% 

[17] 

To enhance and expedite the rehabilita-

tion of hand motor skills after a brain 

stroke 

Flexi-force sensors, flex sen-

sors, MAX30100 sensor 
NR NR 

[18] 

To design a textile-based sensorized 

glove and an air-driven soft robotic 

glove 

Capacitive textile sensors LR, DT, KNN, MLP, XGB 93.45% 

[19] 
To develop a vital sign monitoring sys-

tem 

MPU6050, MAX30100, 

MLX9064 
NR NR 

This work 
To communicate emergency hand ges-

tures and check vital signs, 

MAX30100, LM35, flex sen-

sors 
SVM 81.98% 
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* NR: Not reported, DT: Decision tree, SVM: Support vector machine, KNN: K-nearest neighbor 

method, RF: Random Forest, LR: Logistic regression, MLP: Multi-layer perceptron, XGB: XG-Boost. 

6. Conclusions 

The integration of smart gloves with an IoT-based health monitoring system marks 

a significant advancement in assistive technology for paralysed patients. By translating 

hand gestures into speech through embedded sensors and a text-to-speech module, the 

system enables individuals with limited mobility and speech to communicate their needs 

more effectively, bridging the communication gap and restoring independence and dig-

nity. In addition, it continuously tracks vital parameters such as heart rate, body temper-

ature, and oxygen saturation, transmitting real-time data to healthcare providers via IoT 

platforms for prompt intervention. This dual functionality enhances patient safety, re-

duces the need for constant supervision, and improves the quality of care in both home 

and clinical environments. 

Looking ahead, the system’s adaptability supports future enhancements such as AI-

driven gesture recognition, multilingual support, emotion detection, and advanced 

speech synthesis to expand accessibility and functionality. Integration with telemedicine 

platforms, predictive healthcare analytics, mobile alerts, and machine learning can enable 

faster emergency responses and proactive health management. Energy-efficient design, 

wireless charging, and patient-specific customisation make it a sustainable, inclusive so-

lution with strong potential to transform assistive healthcare. 

Author Contributions: Conceptualisation, A.K. and U.N.T.; methodology, A.K. and U.N.T.; soft-

ware, U.N.T.; validation, U.N.T.; formal analysis, U.N.T. and S.M.; investigation, A.K. and U.N.T.; 

resources, A.K.; data curation, U.N.T.; writing—original draft preparation, A.K. and S.M.; writing—

review and editing, A.K. and U.N.T.; visualisation, A.K. and U.N.T.; supervision, A.K. All authors 

have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The datasets generated during and/or analysed during the current 

study are available from the corresponding author on reasonable request. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Xie, Y.; Sun, S.; Liu, Y.; Xiao, F.; Li, W.; Wu, S.; Cai, X.; Ding, X.; Jin, X. A smart rehabilitation glove based on shape-memory 

alloys for stroke recovery. Appl. Sci. 2025, 15, 7266. https://doi.org/10.3390/app15137266. 

2. Raj, S. Navigating the Challenges of Paralysis: Understanding, Coping, and Thriving. Acta Psychopathol. 2023, 9, 078. 

https://doi.org/10.36648/2469-6676-9.7.78. 

3. Bright, T.; Wallace, S.; Kuper, H. A Systematic Review of Access to Rehabilitation for People with Disabilities in Low- and 

Middle-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 2165. https://doi.org/10.3390/ijerph15102165. 

4. Giri, K.; Logeshwari, M.; Abhishek, A.V.; Dharun, R.; Jeevitha, S.; Mohanaprasath, K.V.; Mangai, S. An advanced smart glove 

for stroke rehabilitation using IoT. In Proceedings of the 2025 Eleventh International Conference on Bio Signals, Images, and 

Instrumentation (ICBSII), Chennai, India, 26–28 March 2025; pp. 1–6. https://doi.org/10.1109/ICBSII65145.2025.11013342. 

5. Banihani, J.; Choukou, M.A. A home-based hand rehabilitation platform for hemiplegic patients after stroke: A feasibility study. 

Heliyon 2024, 10, e35565. https://doi.org/10.1016/j.heliyon.2024.e35565. 



Eng. Proc. 2025, 5, x FOR PEER REVIEW 8 of 8 
 

 

6. Nasr, N.; Leon, B.; Mountain, G.; Nijenhuis, S.M.; Prange, G.; Sale, P.; Amirabdollahian, F. The experience of living with stroke 

and using technology: Opportunities to engage and co-design with end users. Disabil. Rehabil. Assist. Technol. 2016, 11, 653–660. 

https://doi.org/10.3109/17483107.2015.1036469. 

7. Deng, W.; Papavasileiou, I.; Qiao, Z.; Zhang, W.; Lam, K.-Y.; Han, S. Advances in automation technologies for lower extremity 

neurorehabilitation: A review and future challenges. IEEE Rev. Biomed. Eng. 2018, 11, 289–305. 

https://doi.org/10.1109/RBME.2018.2830805. 

8. Polygerinos, P.; Galloway, K.C.; Savage, E.; Herman, M.; O’Donnell, K.; Walsh, C.J. Soft robotic glove for hand rehabilitation 

and task specific training. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 

WA, USA, 26–30 May 2015; pp. 2913–2919. https://doi.org/10.1109/ICRA.2015.7139597. 

9. Lambercy, O.; Maggioni, S.; Lünenburger, L.; Gassert, R.; Bolliger, M. Robotic and Wearable Sensor Technologies for Measure-

ments/Clinical Assessments. In Neurorehabilitation Technology; Reinkensmeyer, D., Dietz, V., Eds.; Springer: Cham, Switzerland, 

2016. https://doi.org/10.1007/978-3-319-28603-7_10. 

10. Haghshenas-Jaryani, M.; Patterson, R.M.; Bugnariu, N.; Wijesundara, M.B. A pilot study on the design and validation of a 

hybrid exoskeleton robotic device for hand rehabilitation. J. Hand Ther. 2020, 33, 198-208. 

https://doi.org/10.1016/j.jht.2020.03.024. 

11. Yang, G.; Deng, J.; Pang, G.; Zhang, H.; Li, J.; Deng, B.; Pang, Z.; Xu, J.; Jiang, M.; Liljeberg, P.; et al. An IoT-enabled stroke 

rehabilitation system based on smart wearable armband and machine learning. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–10. 

https://doi.org/10.1109/JTEHM.2018.2822681. 

12. Lee, L.W.; Wang, S.T.; Li, I.H. An IoT-enabled omnidirectional mobile system for home-based rehabilitation of upper and lower 

limbs. Internet Things 2025, 30, 101525. https://doi.org/10.1016/j.iot.2025.101525. 

13. Postolache, O.; Hemanth, D.J.; Alexandre, R.; Gupta, D.; Geman, O.; Khanna, A. Remote monitoring of physical rehabilitation 

of stroke patients using IoT and virtual reality. IEEE J. Sel. Areas Commun. 2021, 39, 562–573. 

https://doi.org/10.1109/JSAC.2020.3020600. 

14. Chowdhury, O.; Hridoy, M.S.R.; Amin, F.; Arif, S.; Begum, H. Smart Gloves for People with Speech Disability. In Proceedings 

of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 

December 2023; pp. 1–5. https://doi.org/10.1109/ICCIT60459.2023.10441257. 

15. Filipowska, A.; Filipowski, W.; Raif, P.; Pieniążek, M.; Bodak, J.; Ferst, P.; Pilarski, K.; Sieciński, S.; Doniec, R.J.; Mieszczanin, J.; 

et al. Machine Learning-Based Gesture Recognition Glove: Design and Implementation. Sensors 2024, 24, 6157. 

https://doi.org/10.3390/s24186157. 

16. Ji, A.; Wang, Y.; Miao, X.; Fan, T.; Ru, B.; Liu, L.; Nie, R.; Qiu, S. Dataglove for Sign Language Recognition of People with 

Hearing and Speech Impairment via Wearable Inertial Sensors. Sensors 2023, 23, 6693. https://doi.org/10.3390/s23156693. 

17. Dhiman, H.; Kumar, R. An Internet of Things-Enabled Smart Glove for Brain Stroke Rehabilitation. Meas. Digit. 2025, 1, 100001. 

https://doi.org/10.1016/j.meadig.2025.100001. 

18. Ozlem, K.; Gumus, C.; Yilmaz, A.F.; Atalay, A.T.; Atalay, O.; Ince, G. Cloud-Based Control System with Sensing and Actuating 

Textile-Based IoT Gloves for Telerehabilitation Applications. Adv. Intell. Syst. 2025, 7, 2400894. 

https://doi.org/10.1002/aisy.202400894. 

19. Ucar, M.H.B.; Adjevi, A.; Aktaş, F.; Solak, S. Utilizing IoMT-Based Smart Gloves for Continuous Vital Sign Monitoring to Safe-

guard Athlete Health and Optimize Training Protocols. Sensors 2024, 24, 6500. https://doi.org/10.3390/s24206500. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


