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Abstract

Due to their limited mobility and vocal limitations, paralysed individuals frequently
struggle with communication and health monitoring. This work introduces an Internet of
Things (IoT)-based system that combines continuous health monitoring with a sensor-
based smart glove to enhance patient care. The glove detects falls, sends emergency mes-
sages via hand gestures, and monitors vital indicators, including SpO:, heart rate, and
body temperature. The smart glove uses Arduino and ESP8266 modules with MPU6050,
MAX30100, LM35, and flex sensors for these functions. MPU6050 detects falls precisely,
while MAX30100 and flex sensors measure gestures, SpOz, heart rate, and body tempera-
ture. The flex sensor interprets hand motions as emergency alerts sent via Wi-Fi to a cloud
platform for remote monitoring. The experimental results confirmed the superiority and
validated the efficacy of the suggested module. Scalability, data logging, and real-time
access are guaranteed by IoT integration. The actual test cases were predicted using a
Support Vector Machine, achieving an average accuracy of 81.98%. The suggested module
is affordable, non-invasive, easy to use, and appropriate for clinical and residential use.
The system meets the essential needs of disabled people, enhancing both their quality of
life and carer connectivity. Advanced machine learning for dynamic gesture detection and
telemedicine integration is a potential future improvement.

Keywords: Internet of Things (IOT); smart glove; sensors; gesture recognition; health
monitoring; support vector machine

1. Introduction

The IoT-based healthcare system for paralysis patients with paralysis introduces an
innovative solution to transform the care and rehabilitation experience for individuals
with paralysis [1]. Paralysis impairs muscle movement in parts or all of the body and
poses serious challenges regarding mobility, independence, and overall quality of life [2].
Unfortunately, traditional healthcare methods often fall short—especially in remote or
underserved regions —where continuous care, physical therapy, and access to specialised
rehabilitation are limited [3]. With recent technological progress, the Internet of Things
(IoT) has emerged as a game-changer in the healthcare sector. IoT enables real-time health
monitoring, remote medical support, and personalised treatment through interconnected
smart devices [3]. These devices, equipped with sensors and linked via communication
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networks and cloud platforms, can continuously gather and analyse patient data [2]. It
allows for the remote tracking of vital signs, muscle responses, and rehabilitation pro-
gress—helping healthcare providers deliver more effective and timely interventions [2].
Such systems improve patient outcomes and reduce the burden on caregivers and medical
staff. At the heart of this system is a patient monitoring setup, where sensors continuously
collect physiological data. These sensors are directly attached to the patient and are re-
sponsible for detecting and transmitting real-time information. The complete system in-
cludes sensor networks, display modules, wireless communication units, and various
supporting technologies that provide comprehensive, round-the-clock care.

The motivation of this work stems from the communication and health-monitoring
challenges faced by paralysed individuals due to their limited mobility and vocal impair-
ments. These limitations make it difficult for them to convey emergencies, receive timely
medical assistance, and maintain continuous health tracking. By integrating IoT technol-
ogy with a smart glove capable of monitoring vital signs, detecting falls, and sending
emergency alerts through simple hand gestures, the system aims to provide an affordable,
non-invasive, and user-friendly solution that enhances patient safety, quality of life, and
caregiver connectivity in both clinical and home settings.

The main contributions of this research are mentioned below.

- Development of an IoT-based smart glove system that integrates continuous health
monitoring and gesture-based emergency communication for paralysed individuals.

- Implement multiple sensors with Arduino and ESP8266 for fall detection, SpOz, heart
rate, body temperature measurement, and gesture recognition.

- Real-time data transmission to a cloud platform for remote monitoring, ensuring
scalability, data logging, and accessibility.

- Application of a Support Vector Machine (SVM) model for gesture prediction,
achieving an average accuracy.

- Deliver an affordable, user-friendly solution suitable for clinical and home environ-
ments, improving patient quality of life and caregiver connectivity.

2. Existing Works

The literature review for an IoT-based healthcare system for paralysis patients with
paralysis explores the wide range of technological innovations and research efforts that
focus on improving rehabilitation and patient care using IoT. These studies provide in-
sight into the current landscape and highlight the opportunities and limitations that guide
the development of more effective and accessible systems. This review brings together
various works that have contributed to the understanding and advancement of IoT appli-
cations in healthcare, particularly for individuals with paralysis. An intelligent rehabilita-
tion glove enhanced by IoT technology to assist patients recovering hand function has
been introduced in [4]. The glove has integrated sensors and actuators that monitor ther-
apeutic movements and deliver personalised exercise regimens. The study highlights the
glove’s potential to improve engagement, track recovery trends, and support individual-
ised therapy. The practicality of using wearable devices for home-based hand rehabilita-
tion, especially in stroke survivors, is suggested in [5]. The system used motion sensors
and interactive software to guide and evaluate therapeutic exercises. Results showed that
patients found the devices easy to use and comfortable. The work in [6] focused on how
technology can enhance patient motivation during stroke rehabilitation. The study looked
at tools such as wearable devices, virtual reality platforms, and mobile apps designed to
increase patient engagement. This work offered real-time feedback, gamified experiences,
and tailored exercise plans, making rehabilitation more interactive and enjoyable, thus
improving therapy compliance. The broader trends of IoT applications in stroke
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rehabilitation have been discussed in [7]. It details how wearable sensors and smart sys-
tems enable the real-time tracking of vital signs and therapy progress. In [8], a soft robotic
glove was developed to help patients regain hand mobility. Built with flexible materials
and actuators, the glove supported passive and active hand movements. It offered adapt-
able support aligned with the patient’s therapy needs, promoting muscle strength and
movement coordination. The work [9] examined the acceptance and usability of wearable
and robotic rehabilitation technologies. The findings revealed that successful integration
of these devices depends not only on their technical capabilities but also on user experi-
ence—ease of use, comfort, and affordability were significant factors influencing long-
term adoption. Another work in [10] developed a prototype smart glove to support dex-
terous hand rehabilitation. The glove integrated actuators and motion sensors to guide
patients through hand exercises with real-time feedback. Clinical trials indicated improve-
ments in hand strength and coordination, suggesting strong potential for use in therapy
routines. An loT-based rehabilitation system that allowed real-time tracking of patient
vitals, movement patterns, and therapy results has been proposed in [11]. The system lev-
eraged cloud computing and wearable devices to enable remote patient monitoring, em-
powering healthcare providers to make informed, timely decisions regarding patient care.
A personalised IoT rehabilitation system that targeted upper limb movement in patients
was suggested in [12]. With wearable sensors and actuators, the system offered real-time
feedback and therapy adjustments tailored to each user. The work in [13] explored how
wearable IoT devices could support stroke rehabilitation outside hospital environments.
Their research demonstrated that real-time monitoring of vital signs and therapy progress
allows for early detection of issues, timely intervention, and better patient outcomes.

Current IoT-based rehabilitation systems for paralysis patients with paralysis show
promise but face several limitations. Most studies are short-term, with small and non-
diverse samples, limiting generalizability. Personalisation is often static, with little real-
time adaptation to patient progress, and usability factors like comfort, affordability, and
long-term adherence are underexplored. Critical aspects such as energy efficiency, data
privacy, interoperability with clinical systems, and cost-effectiveness are rarely addressed.
Additionally, there is limited focus on multimodal sensing, algorithm transparency, and
deployment in low-resource settings, along with a lack of open datasets for reproducibil-
ity.

Gaps in multimodal sensing, algorithm transparency, and deployment in low-re-
source settings further limit their scalability and inclusivity. Addressing these issues re-
quires more robust, adaptive, and accessible solutions supported by standardised evalu-
ation protocols and open datasets.

The prime novelty points of this work include:

- Integration of fall detection, vital sign monitoring, and gesture-based emergency
alerts into a single IoT-enabled smart glove.

- Multi-sensor fusion (MPU6050, MAX30100, LM35, flex sensors) for comprehensive,
real-time health and safety tracking.

- Cloud-based remote monitoring with data logging for scalability and continuous
caregiver access.

- Application of SVM for dynamic gesture recognition with reasonable accuracy.

- Low-cost, non-invasive, and portable design suitable for clinical and home use.

3. Proposed Model

The experimental apparatus comprises a glove outfitted with various sensors, includ-
ing flex sensors, inertial measurement units (IMUs), and pressure sensors, intended to
record finger flexion, wrist orientation, and additional motion attributes. These sensors
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produce signals that correlate to physical movements, which are subsequently directed
through an interface circuit for signal conditioning. This phase guarantees noise attenua-
tion, appropriate scaling, and analog-to-digital conversion as required, facilitating precise
and accurate data capture. The processed sensor data is gathered using a microcontroller
or data collection unit, which organizes and transmits the values to a linked computer for
subsequent analysis. A simple schematic of the proposed model is shown in Figure 1.

Upon transfer, the data is subjected to preprocessing, encompassing normalisation to
eliminate scale discrepancies, extracting pertinent statistical and temporal aspects, and, if
required, reducing dimensionality to improve computing performance. The curated da-
taset is subsequently provided to a Support Vector Machine (SVM) classifier designed to
differentiate between various gestures or movements. The system generates gesture labels
instantaneously, which can be exhibited, archived, or utilised for the operation of external
devices such as robotic arms or virtual reality interfaces. The process includes a calibration
phase before actual trials, followed by performance evaluation utilising accuracy
measures, confusion matrices, and real-time tests to ascertain the reliability and respon-
siveness of the system.

The sensor workflow of the proposed model is depicted in Figure 2. This work has
three main components: preprocessing, feature extraction, and classifier optimisation.
First, the raw sensor data from flex sensors, accelerometers, and gyroscopes should be
preprocessed for consistency and noise reduction. This involves normalising all read-
ings—either scaling them to a range between 0 and 1 or applying z-score normalisation—
and using a low-pass filter, such as a Butterworth or moving average filter, to remove
high-frequency noise. Continuous data streams should then be segmented into fixed-size
windows, for example, 200 ms per segment with 50% overlap, ensuring uniform input
length for feature extraction.

Sensor glove

P I

( internet )\

Data Collection and -
Transmitting Unit .\\

Figure 1. Simple schematic of the proposed model.

From each window, a set of discriminative features should be extracted. For flex sen-
sors, this includes the mean, variance, and slope of bend angle changes. Accelerometer
data can contribute statistical measures such as mean and standard deviation, and derived
metrics like signal magnitude area (SMA), pitch, and roll. Gyroscope data should provide
angular velocity measures, including mean, standard deviation, and signal energy. Op-
tionally, frequency-domain features such as the magnitudes of the first 5-10 FFT
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coefficients can be included to capture gesture dynamics, resulting in a final feature vector
of around 30-50 features per gesture.

The SVM should be configured with an RBF kernel to handle the nonlinear patterns
typical in gesture data. Initial hyperparameters can include a penalty parameter L =10 for
balanced margin control, with k set to “scale” for automatic kernel width adjustment. If
the gesture dataset is imbalanced, a "balanced class weight setting can help improve per-
formance across classes. A one-vs-one multi-class strategy is recommended for sign lan-
guage gestures. Model training should use a 70-15-15 split for training, validation, and
testing, combined with 5-fold cross-validation to fine-tune L and k within ranges such as
L={0.1, 1, 10, 100} and k= {0.001, 0.01, 0.1, 1}.

Finally, for deployment, the trained SVM model can be exported as a “.pkl’ file using
scikit-learn and integrated into either the glove’s microcontroller or a connected
smartphone application. The preprocessing pipeline must be replicated precisely during
deployment to ensure consistency between training and inference. This approach offers a
lightweight yet powerful recognition system well-suited for real-time sign language in-
terpretation.

Y

Preprocessing

Y

Feature Extraction qu.el
Training
Y
RBF SVM .pkl File

A

Deployment

Result

Figure 2. The sensing workflow of the proposed model.

4. Results and Discussion

The glove uses built-in sensors to determine the wearer’s temperature, heart rate, and
hand gestures. Arduino is used to gather and communicate these sensor readings, after
which Python is used to analyse the data for testing. The SVM classifier trains a machine
learning model for data like gesture, heart rate, and temperature. Whether the condition
is true or not is predicted by the result. A comparative analysis of SVM efficiency across
different observation test cases for the proposed experiment is presented in Table 1. An
efficiency of 83.33% is obtained in Test Case 1 with 44 true positives, 8 false positives, 7
false negatives, and 31 true negatives. With an efficiency of 81.65%, Test Case 2 displays
50 true negatives, 12 false positives, 8 false negatives, and 39 true positives. With an
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efficiency of 76.98%, Test Case 3 shows 45, 9, 10, and 46 as true positives, false positives,
false negatives, and true negatives, respectively. Subsequent test cases show similar pat-
terns. The calculated average efficiency for all situations is 81.98%.

Table 1. Comparative analysis of SVM efficiency on different observation test cases.

. Observa- True Positive False Positive False' Nega- True Negative Efficiency
tion/Test Case tive
1 44 8 7 31 83.33%
2 39 12 8 50 81.65%
3 45 9 10 46 82.73%
4 39 10 13 55 80.34%
5 59 14 11 42 80.16%
6 47 9 11 54 83.47%
7 45 10 8 38 82.18%

5. Comparison

The current work, designed for emergency hand gesture communication alongside
vital sign monitoring, stands out from previous studies that primarily concentrated on a
single functionality. Gesture-only systems, such as those by [14-16], and [18], achieved
notably higher accuracies ranging from 88.97% to nearly 98%, owing to their optimization
for dynamic sign language or gesture detection using dedicated sensors like flex sensors,
IMUs, and textile-based capacitive sensors, often coupled with convolutional neural net-
works. In contrast, health-focused works like [17] and [19] emphasized rehabilitation or
vital sign monitoring, prioritizing reliability and precision over classification accuracy,
and did not attempt gesture-based interaction. While the current work reports a compar-
atively lower accuracy of 81.98%, this trade-off arises from the dual-purpose integration
of gesture recognition and biomedical sensing, which introduces greater complexity and
sensor noise. Unlike the specialized systems, it addresses a broader spectrum of user
needs, making it more versatile for real-world emergency communication and health
monitoring scenarios, though with some compromise in recognition performance.

Table 2. Comparative analysis of existing works and the proposed approach.

Works Aim Sensors Used Algorithm/Classifier Accuracy
[14] To convert Bangla sign language to Flex sensors, gyroscope, ac- Convolutional neural net- 88,979
spoken Bangla text celerometer work R
Fl , f ) -
To capture and classify dynamic hand . X SENSOTS, TOTCE SENSOTS, o nvolutional neural net-
[15] estures inertial measurement unit work 90%
& (IMU) sensor
To develop d ic sign 1 -
[16] o deve Op, yhathic sign ‘anguiage ges Accelerometers, gyroscopes DT, SVM, KNN, RF ~98%
ture detection
To enhance and expedite the rehabilita- Flexi-force sensors. flex sen
17 tion of hand motor skills aft i ’ “NR R
[17] ion of hand motor skills after a brain sors, MAX30100 sensor N N
stroke
To design a textile-based sensorized
[18] glove and an air-driven soft robotic Capacitive textile sensors LR, DT, KNN, MLP, XGB 93.45%
glove
To develop a vital sign monitoring sys- MPU6050, MAX30100,
[19] tem MLX9064 NR NR
This work To communicate emergency hand ges- MAX30100, LM35, flex sen- SVM 81.98%

tures and check vital signs, sors
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* NR: Not reported, DT: Decision tree, SVM: Support vector machine, KNN: K-nearest neighbor
method, RF: Random Forest, LR: Logistic regression, MLP: Multi-layer perceptron, XGB: XG-Boost.

6. Conclusions

The integration of smart gloves with an IoT-based health monitoring system marks
a significant advancement in assistive technology for paralysed patients. By translating
hand gestures into speech through embedded sensors and a text-to-speech module, the
system enables individuals with limited mobility and speech to communicate their needs
more effectively, bridging the communication gap and restoring independence and dig-
nity. In addition, it continuously tracks vital parameters such as heart rate, body temper-
ature, and oxygen saturation, transmitting real-time data to healthcare providers via IoT
platforms for prompt intervention. This dual functionality enhances patient safety, re-
duces the need for constant supervision, and improves the quality of care in both home
and clinical environments.

Looking ahead, the system’s adaptability supports future enhancements such as Al-
driven gesture recognition, multilingual support, emotion detection, and advanced
speech synthesis to expand accessibility and functionality. Integration with telemedicine
platforms, predictive healthcare analytics, mobile alerts, and machine learning can enable
faster emergency responses and proactive health management. Energy-efficient design,
wireless charging, and patient-specific customisation make it a sustainable, inclusive so-
lution with strong potential to transform assistive healthcare.
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