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Abstract 

A Traditional fire alarm systems use smoke sensors to monitor the concentration of smoke 

particles in the air. If the concentration exceeds a certain threshold, an alarm signal is trig-

gered. However, this detection process could lead to false fire alarms, causing unneces-

sary evacuations and panic among residents. False alarms may result from activities such 

as smoking in non-smoking areas, burning Oud, or cooking smoke. In this study, a deep 

neural network (DNN) model was trained to classify three types of smokes that were Oud, 

Cigarette, and burning tissue smokes. The offline prediction accuracy of this model was 

97.5%. The size of the model after converting it to TensorFlow lite was 4.7 Kbytes. It can 

be also converted to tiny model to deploy it on microcontroller. 

Keywords: machine learning; gas classification; tiny-ML; edge computing; deep neural 

network 

 

1. Introduction 

The traditional fire alarm systems are essential components of an indoor safety envi-

ronment. These systems typically rely on smoke sensors that set on an alarm if the con-

centration of smoke particles exceeds a specific threshold [1]. The downside of a similar 

system is unable to classify gasses and smokes which could lead to generate false alarms 

from non-threatening activities, such as Oud, Cigarette Smokes, or Cooking. These false 

alarms can cause panic, unnecessary evacuations, and a decline in trust in the reliability 

of fire alarm systems. By adding gasses and smokes classification, the system will be able 

to distinguish between hazardous and harmless smoke which will result in increasing the 

level of reliability on the system. Several studies have explore different mechanism to de-

tect and classify leakage in different applications. For inctance, Barkani et al. [2] have de-

ployed lightweight convolutional neural network on a microcontroller integrated with a 

thermal camera to detect gas leaks. Khan [3] have detected gas leakage based on the gas 

concentation using semiconductor sensors. Pan et al. [4] have utilized neural network, IoT 

technology, and surveillance camera to early detect fires. Sharma et al. [5] have inversti-

gated multiple gas sensors with thermal camera and federated learning tecchnique to de-

tect gas leakages. However, there is no study classify different type of smokes in indoor 

environment that assists to enhance the perfoemcne of fire alarm system. Therefore, in 

this study, A deep neural network (DNN) was utilized to classify three different types of 
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smokes, that were Cigarettes, Oud, and burning tissue smokes including fresh air (back-

ground) in indoor environment. The smoke classification DNN model can be converted 

to smaller model that can be deployed on microcontroller to enhance the performce of fire 

alarm detector. This classification process will provide users with a predicted smoke type 

before fire alarm. 

2. Materials and Methods 

2.1. System Description 

In this study, Tiny-ML will be used to classify the source of smoke in indoor environ-

ment. The datasets that were used to train the machine learning model were acquired by 

using three different sensor modules as shown in Table 1 [6–12]. The first module (BME 

680) was used to detect and measure volatile organic compounds (VOC), temperature, 

and humidity. The second sensor module (Grove–Multichannel Gas sensor V2) that con-

sists of four gas sensors was utilized to detect carbon monoxide (CO), nitrogen dioxide 

(NO2), ethanol (C2H5CH), and volatile organic compounds (VOC). The third sensor mod-

ule (MQ 136) acquired hydrogen sulfide. These sensor modules were integrated with Wio 

terminal microcontroller as shown in Figure 1. This Wio terminal was used because that 

it has ARM Cortex-M4F core running at 120 MHz. This microcontroller is also supporting 

Arduino library for tensorflow lite for microcontroller. Moreover, it has 4 MB external 

flash and 192 KB RAM. It is also supporting all communication protocol used by sensor 

modules. These features allow to deploying Tiny-ML model on it [13,14]. 

Table 1. Gas sensors Specifications. 

Sensor Target Gases Detection Ranges 

BME 680 

Volatile Organic Compounds 

(VOCs), Temperature, and Hu-

midity 

VOCs (IAQ) = 0 to 500 

Temperature (CO) = −40 to 85 

Humidity (%) = 0 to 100 

Grove–Multichannel 

Gas sensor V2 

• GM-102B 

• GM-302B 

• GM-502B 

• GM-702B 

NO2 gas, Ethanol vapor, VOC 

gas, and CO gas 

NO2(PPM) = 0.1 to 10 

Ethanol (PPM) = 1 to 500 

VOC (PPM) = 1 to 500 

CO(PPM) = 5 to 5000 

MQ 136 Hydrogen Sulfide (SnO2) gas SnO2(PPM) = 1 to 200 
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Figure 1. The Block diagram of the Fire alarm detector. 

2.2. Data Collection and Calibration 

Three types of smoke were used to collect datasets that were cigarettes, Oud, and 

burning tissue smokes including fresh air (background) in indoor environment. The size 

of the room that was used to collect datasets is around 76 m3. Moreover, the distance be-

tween the source of smoke and gas sensors was 30 cm. Before collecting smoke data, the 

used gas sensors were run for 48 h as preheat that is recommended in their datasheet [6–

12]. After that, when these sensors were run again, they need almost 30 min as a preheat 

until the sensor data become stable. The smokes datasets were collected using Arduino 

and python code that were written by Shawn Hymel [15]. However, the Arduino code 

was modified to be suitable for collecting data from the used gas sensors. The sampling 

rate for these sensors were set to be 10 samples per second. 20 samples were also acquired 

for each single data file. These data files were saved in .CSV format. 2400 data files were 

collected for all smoke types including fresh air. 

In this study, the output data from the gas sensors were affected by the temperature 

and humidity of the surrounding environment. Therefore, the collected dataset should be 

calibrated before using them in training Deep Neural Network (DNN) model. However, 

there is not clear equation or graph describe the relation between the output of these gas 

sensors and the temperature and humidity of the surrounding environment. To deal with 

this issue, the effect of changing surrounding temperature on the output of gas sensor was 

analyzed when the surrounding humidity was assumed fixed. This was done by acquiring 

data from gas sensors for a fresh air inside the room for different temperature values as 

shown in Figure 2. During the collection data, the humidity inside the room changed be-

tween 21% and 25%. 

From Figure 2, it can be noticed that the output of GM-502B, GM-102B, and GM-302B 

sensors linearly increased when the room temperature increased (Figure 2A–C). When the 

room temperature increases from 22 °C to 26 °C, the output of GM-502B, GM-102B, and 

GM-302B sensors rise by 37, 47, and 45 a.u. respectively. The output of GM-702B slightly 

raised by changing the room temperature as shown in Figure 2D. The output of GM-702B 

increased by 5 a.u. when the room temperature change from 22 °C to 26 °C. The output of 
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MQ-136 sensor is almost not affected by temperature of the room as shown in Figure 2E. 

This led to neglect the effect of temperature on the output of MQ-136 sensor. In addition, 

the output of BME-860 VOC gas sensor reduced when the temperature of the surrounding 

environment increased as shown in Figure 2F. When the room temperature rise from 22 

°C to 26 °C, the output of BME-860 VOC gas sensor reduced by 357.337 a.u. 

 

Figure 2. The relation between gas sensors output and the temperature of surrounding environ-

ment. 

The least square method was used to determine the linear relation between the gas 

sensors outputs and temperature of the surrounding environment. Based on this method, 

the slope and y intercept for straight line Equation (1) were calculated [16]. 

𝑌 = 𝑚𝑋 + 𝑏 (1) 

where Y is the output of gas sensor, m is the slope, X is the temperature, and b is the y 

intercept. The slope (m) can be calculated by using Equation (2) [16]: 

𝑚 =
𝑛∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2
 (2) 

where n is the number of samples. The y intercept (b) can be calculated using Equation (3) 

[16]: 

𝑏 =
∑𝑥𝑖

2∑𝑦𝑖 −∑𝑥𝑖 ∑𝑥𝑖𝑦𝑖

𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2
 (3) 

The correlation between the output of gas sensors and the room temperature can be 

measure using Pearson Correlation Coefficient (r) as shown in Equation (4) [16]: 

𝑟 =
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

√(𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2)(𝑛 ∑𝑦𝑖
2 − (∑𝑦𝑖)

2)
 (4) 
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Based on these equations, the least square fitting functions and correlation coeffi-

cients between gas sensors outputs and temperature were calculating as shown in Table 

2. There are high positive correlations (r = 0.99) between the output of GM-502B, GM-102B, 

and GM-302B gas sensors and room temperature. The output of GM-702B gas sensor has 

also high positive coefficient with room temperature that is 0.85. Whereas the output of 

MQ-136 sensor is not correlation with room temperature. The correlation coefficient be-

tween them is −0.29. In addition, the output of BME-860 VOC gas sensor has high negative 

correlation with the room temperature. It had −0.95 correlation coefficient. This means 

when the room temperature increase, the output of the gas sensor reduces. The least 

square fitting functions in Table 2 were used to plot the least square fitting straight line 

for each gas sensor in Figure 2. 

Table 2. The least square fitting function and correlation coefficient between gas sensors outputs 

and surrounding environment temperature. 

Gas Sensor Least Square Fitting Function Correlation Coefficient 

GM-502B Y = 9.99X − 106.16 r = 0.99 

GM-102B Y= 12X − 90.88 r = 0.99 

GM-302B Y= 11.45X − 174.87 r = 0.99 

GM-702B Y= 0.97X + 765.37 r = 0.85 

MQ-136 Y= −0.36X + 625.23 r= −0.29 

BME-860 VOC gas sensor Y= −6836X + 545339 r= −0.95 

2.3. Data Preprocessing 

In this study, four classes of smoke that are fresh air (background), cigarettes, Oud, 

and burning tissue smokes were used. 600 data files were acquired for each class. In ad-

dition, each data file had 20 data samples for each gas sensors. In the beginning, the col-

lecting data samples were calibrated to be acquired at 25 °C as shown in Figure 3. after 

that, these collected data samples were normalized for each gas sensor using Equation (5) 

[17]: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (5) 

where 𝑋𝑛𝑜𝑟𝑚  is the normalization value, 𝑋  is a sample value, 𝑋𝑚𝑖𝑛  is the minimum 

value of the data samples, and 𝑋𝑚𝑎𝑥  is the maximum value of the data samples. This nor-

malization process improved the performance of training machine learning (ML) model 

by using single scale for all data samples. After doing normalization process, each data 

file had 20 normalized data samples for each gas sensor. Average, standard deviation, 

minimum, maximum, and root mean square (RMS) values were calculated for each gas 

sensors in the data file as shown in Figure 3. Then these values will be used to training the 

DNN model. 
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Figure 3. The steps of preprocessing data. 

2.4. Deep Neural Networks (DNN) Model 

TensorFlow that is an open-source deep learning software [18] was used to design 

and train the smoke classification model as shown in Figure 4. The input of this model is 

an array of preprocessing data consists of 30 elements. As a result, the input layer of DNN 

contain 30 nodes. In addition, this DNN has two hidden layers and one dropout layer as 

shown in Figure 4. The first hidden layer consists of 30 nodes while the second hidden 

layer had 10 nodes. The activation function of these hidden layers was rectified linear unit 

(ReLU) [19]. The dropout layer was also set between these two hidden layers to avoid 

overfitting [20]. The percentage of dropout was 20%. The output layer had 4 node that 

represented the classification classes. The activation function of this layer was softmax. In 

this training, the dataset was divided into three parts that were 60% for training, 20% for 

validation, and 20% for testing. The sparse_categorical_crossentropy loss function and 

adam optimizer with learning rate = 0.001 was used. In addition, the number of epochs 

and batch size were 150 and 32 respectively. 
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Figure 4. The structure of smoke classification model. 

3. Results and Discussion 

The accuracy and loss of the DNN module during training epochs is shown in Figure 

5. The training and validation accuracy at epoch number 150 were 97% and 97.7% respec-

tively. In addition, the training loss and validation loss at epoch number 150 were 0.094 

and 0.052 respectively. The test accuracy of this model 97.5%. Figure 6 shows the confu-

sion matrix for smoke classification model. This classification model predicted 100% ac-

curate for background and cigarette smoke testing data. However, 2.7% of Oud testing 

data and 7.59% of tissue testing data were misclassified. The macro average precision, 

recall, and F1 score of the classification model were 97.48%, 97.45%, and 97.43% respec-

tively [21]. 



Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 10 
 

 

 

Figure 5. (A) The accuracy of DNN model, and (B) the loss of DNN model during training epochs. 

 

Figure 6. The confusion matrix for smoke classification model. 

This smoke classification model was optimized by using post training quantization 

technique. In this technique the model weight was quantitated from 32 bit float to 8 bit 

integer. This led to reducing the size, latency, and power consumption of the model. How-

ever, the accuracy of the model will be slightly reduction due to this quantization process 

[22]. The size of the model after applying post training quantization and converting the 

model to tensorflow lite (flatbuffer) was 7.4 Kbytes. Before deploying this classification 

model on Wio terminal, the tensorflow lite model was converted to C data file. In addition, 
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the Arduino tensorflow lite for microcontroller library was used to run and interpret C 

data file of the model. 

Before providing the deployed model on Wio terminal with sensor data, these data 

were calibrated to be collected at 25 °C temperature. Then, these data were normalized 

using the maximum and minimum values of training data. After that, average, strander 

deviation, minimum, maximum, and RMS values for each 20 sample of each sensor were 

calculated to use them as an input for the model. The allocated tensor arena and inference 

time of the deploying model were 1.3 KB, and 226 usec respectively. This deploying model 

was tested in indoor environment. The temperature and humidity in the testing area were 

around 30 °C and 22% respectively. During the testing, the system was able to predict all 

smoke types. However, the prediction of the system was fluctuated for oud and tissue 

smokes before providing the right prediction. Based on this result, the classification smoke 

model can enhance the fire alarm system by providing the user with prediction of source 

of smoke before generating alarm signals. 

4. Conclusions 

In this paper, three different smoke types were classified using tiny ML technology. 

The accuracy of the model was 97.5%. This type of smoke classification will assist to pre-

dict the source of smoke before triggering the fire alarm system and taking action to evac-

uate buildings. In future work, the number of classification smoke classes will be in-

creased. In addition, this detection system will be connected with mobile application to 

receive alarms and smoke sources predictions remotely. 
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