Y engineering [’\
proceedings MI{’;!J

Proceeding Paper
Impact of Electrical Noise on the Accuracy of Resistive Sensor

Measurements Using Sensor-to-Microcontroller
Direct Interface *

Marco Grossi * and Martin Omana

Department of Electrical Energy and Information Engineering “Guglielmo Marconi” (DEI),

University of Bologna, 40136 Bologna, Italy; martin.omana@unibo.it

* Correspondence: marco.grossi8@unibo.it; Tel.: +39-0512093038

* Presented at the 12th International Electronic Conference on Sensors and Applications (ECSA-12), 12-14
November 2025; Available online: https://sciforum.net/event/ECSA-12.

Abstract

Wireless sensor networks (WSNs) implemented in the paradigm of the Internet of Things
(IoT) are characterized by a large number of distributed sensor nodes that make measure-
ments in-the-field and communicate with other sensor nodes and servers in the cloud by
means of wireless technology. Sensor-to-microcontroller direct interface (SMDI) is a tech-
nique used for the measurement of resistive sensors without the use of an ADC. In SMDI
based measurements, the sensor is directly interfaced with the digital input-output pins
of the general purpose input output (GPIO) interface of microcontrollers and FPGAs.
Compared with the measurements per-formed with an ADC, SMDI is characterized by
lower cost and lower power consumption. In this paper, the impact of noise on the accu-
racy of resistive sensor measurements using SMDI is investigated. The study was carried
out by LTSpice electrical level simulations and validated by preliminary experimental
measurements, where a set of resistances in the range from 100 € to 10 kQ were measured
by SMDI under different levels of noise. For each operative condition, the simulations
were also carried out in the case of measurements performed with a 12-bit ADC and the
achieved accuracy for the measured resistances was compared with the results achieved
by SMDI. The results have shown that noise can seriously impact the measured accuracy
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applications [20-23]. In particular, the integration of low-power computing devices, sen-
sors, and wireless communication technologies has led to the development of wireless
sensor networks (WSNs), where large amount of data are acquired and shared with other
sensor nodes and servers in the cloud [24-27]. Sensor data are normally acquired by mi-
crocontrollers or Field Programmable Gate Arrays (FPGAs) using analog-to-digital con-
verters (ADCs), either integrated in the computing device or external [28-31].

WSNis are usually powered by batteries and/or energy harvesting devices, thus the
sensor node power consumption is of paramount importance [32-34]. From this point of
view, sensor-to-microcontroller direct interface (SMDI) is a technique that can be used to
acquire sensor data without the use of an ADC, thus providing significant advantages in
terms of low power consumption [35,36]. SMDI exploits the Schmitt triggers integrated in
the general purpose input output (GPIO) interface of microcontrollers and FPGAs to di-
rectly interface the sensors analog output signal with the digital input pins of the compu-
ting device. SMDI has been exploited for the measurement of different types of sensors,
such as resistive sensors [37-40], capacitive sensors [41-44], inductive sensors [45-47], as
well as sensors featuring an output voltage signal [48].

As known, noise affects the reliability of electronic systems and can produce a severe
limitation of the system reliability [49,50]. In particular, in the case of sensors, the noise
contributes to the decrease of the signal-to-noise ratio and the measurement accuracy.
Thus, we have investigated the impact of the noise on the measurement accuracy of resis-
tive sensors using the SMDI technique. Different types of electrical noise can impact the
reliability of electronic circuits, and they are typically classified in two different groups:
intrinsic (or internal) noise and external noise [51]. Intrinsic noise refers to all the noise
types that are generated inside an electronic device, such as thermal noise (produced by
the random thermal agitation of electrons and holes in a conductor), shot noise (produced
by the random arrival of electrons and holes at a discontinuous interface inside a device),
flicker noise (that is usually found in transistors operating at low frequency), and transit
time noise (produced by the energy transfer between electrons and ions). External noise,
instead, refers to all types of noise that are generated outside of electronic devices, such
as crosstalk noise and electromagnetic noise. Another classification for noise types is re-
lated to the shape of their power spectral density (PSD), as a function of frequency (f).
White noise presents a flat PSD, while pink noise features a PSD proportional to -, red
noise features a PSD proportional to £, blue noise features a PSD proportional to f, and
violet noise features a PSD proportional to f2. Our study considers only white noise as
electrical noise source. The study was carried out by electrical level simulations with
LTSpice [51] (with validation on preliminary experimental measurements), using a set of
standard resistors of value between 100 Q and 10 k() to represent a realistic working range
for the values of a resistive sensor, and comparing the results with the case of measure-
ments carried out using a 12-bit ADC for reference. The results have shown that measure-
ments carried out using SMDI are strongly affected by noise and different noise types
(gaussian white noise or uniform white noise) can have a different impact on the meas-
urement accuracy. Moreover, the presence of noise can seriously degrade the measure-
ment accuracy also in the case the measured sensor value is averaged on a large number
of samples. In order to address these issues, we have proposed a mitigation strategy that
can compensate the impact of noise on the measurement accuracy. It is based on the idea
to use a programmable potentiometer in order to compensate the impact of noise by per-
forming periodic calibrations on its value.

The paper is structured as follows. In Section 2, the simulation setups for the resistive
sensor measurements using the SMDI technique and the 12-bit ADC are presented. In
Section 3, the simulation results are presented and the accuracy achieved with the SMDI-
based measurements and the ADC-based measurements are compared. In Section 4, the
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simulation results are discussed and a mitigation strategy to improve the measurement
accuracy for the SMDI technique is presented. In Section 5, the simulations results are
validated by experimental measurements on a microcontroller. Finally, conclusions are
presented in Section 6.

2. Simulation Setup

The study has been carried out by electrical level simulations with LTSpice [52], con-
sidering a 180 nm CMOS technology. In Section 2.1, the simulation setup for the case of
SMDI-based measurements is presented, while in Section 2.2, the simulation setup for the
case of ADC-based measurements is presented.

2.1. SMDI-Based Measurements

Sensor-to-microcontroller direct interface (SMDI) is a technique that can be used to
acquire sensor data without the use of an ADC, by interfacing the sensor directly to digital
input-output pins of a microcontroller. The simulation setup for a resistive sensor Rr,
measured with a microcontroller using the SMDI technique, is shown in Figure 1, where
C is a discrete external capacitance.

microcontroller
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register Ouughatt —4 R T

7
e ouT W
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Figure 1. Simulation setup for a resistive sensor Rt measured using the SMDI technique.

SMDI exploits the Schmitt triggers integrated in the GPIO interface of microcontrol-
lers to create an astable oscillator (with time constant RtC) whose period is measured,
using the digital timers integrated in the microcontroller, to estimate the resistive sensor
value Rr. The analog voltage Vin on an input pin of the microcontroller is fed to the non-
inverting Schmitt trigger integrated in the GPIO interface of the microcontroller. The
Schmitt trigger features two threshold voltages (Vu and Vi) so that, if Vix > Vi then the
Schmitt trigger output is Voo, while if Vin < Vi then the Schmitt trigger outputis 0 V.

The microcontroller CPU acquires the digital value at the Schmitt trigger output and
controls the Output Driver Controller (ODC) module so that the voltage at the output pin
(Vour) is the complement of the Schmitt trigger output value.

The working principle of the measurement of Rt using SMDI can be defined as fol-
lows. Initially, it is Vin = Vi, Vour = Vop, and the capacitance C is charged with time con-
stant R1C (i.e., Viv increases). When it is Vin = VH, the Schmitt trigger output switches from
0V to Vop and Vour switches from Vob to 0 V. Then, the charging step of the capacitance
(whose duration is indicated with tx) terminates and the discharging of the capacitance C
starts. When it is Vin = Vi, the Schmitt trigger output switches from Vob to 0 V and Vour
switches from 0 V to Vop. Then, the discharging step of the capacitance (whose duration
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is indicated with t.) terminates and the charging of the capacitance C starts again. The
values of tu and tr can be expressed as [40]:

VH
1 VDD - VL
ty = R;C —dV,y = R;C-log—— 1
H T IVDD_VIN IN T 09VD —V, 1)
VL
VL
1 Vy
tL = _RTC f _dI/IN = RTC . lOg— (2)
o Vin VL

The oscillation period Tr of the signals Vin and Vour can be measured using the digital
timers integrated in the microcontroller and can be expressed as:

Vi (Vop — V1)

Tp =ty +t; =R;C-log———= 3
P HTUl T g V, Vo — Vi) 3)
and the value of the resistive sensor can be calculated as:
T,
RT = P
¢ log Vi0op = V1) )
V,(Vop — Vi)

The simulation setup of Figure 1 was implemented in LTSpice by using an ideal non
inverting Schmitt trigger with threshold voltages of Vi =1.9 V and VL =1.4 V, a power
supply of Vob = 3.3 V, a value for the capacitance C of 100nF, seven different values for
the resistive sensor Rr (100 Q, 250 Q, 500 €, 1000 Q, 2500 €, 5000 €3, 10,000 Q). The choice
of fixed Schmitt trigger thresholds (Vi =1.9 V and Vi = 1.4 V) has been considered as a
case study. As discussed in [48], these thresholds can present significant different values
for different devices. Moreover, slight differences in the Schmitt trigger thresholds for a
single device also occur due to parameters dispersion introduced during manufacturing.
Thus, to make accurate estimations of the sensor value, the exact values of the Schmitt
trigger thresholds must be determined before the measurements. The operations per-
formed by the microcontroller CPU were emulated by connecting a NOT digital gate be-
tween the output of the Schmitt trigger and the microcontroller output pin. The impact of
the noise on the sensor measurement accuracy was evaluated by placing a white noise
voltage generator (uniformly distributed) in series with the input pin of Figure 1. Nine
different values of the white noise peak-to-peak voltage were evaluated (1.25 mV, 2.5mV,
5mV, 10 mV, 20 mV, 33.3 mV, 40 mV, 50 mV, 100 mV).

2.2. ADC-Based Measurements

The standard technique for sensors measurement by a microcontroller is based on
the use of an ADC (integrated in the microcontroller or external) to acquire the analog
information from the sensor and translate it to a digital format for data processing. In the
case of a resistive sensor, a typical measurement setup is presented in Figure 2.

The measurement setup shown in Figure 2 exploits a Wheatstone bridge to generate
a differential voltage (Vin+ — Vin-) that is used to estimate the resistive sensor value Rr.
Indicated with Rrer a reference resistor of known value, it is:

Ving = LVDD )
RT + RREF
Since it is Vin- = Vbp/2, then it is:
VDD RT - RREF

Ving = Viyo = —2 L __REF
IN+ IN 2 RT+RREF (6)
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The differential voltage Vin+ — Vin- is sampled and quantized by the ADC and a digital
word DuDuo ... DiDo is generated and fed to the microcontroller for data processing.

microcontroller 12-bit ADC
Voo
D,
D,
CPU |
( 'I 'I\.AU(
TRG ¢

Figure 2. Simulation setup for a resistive sensor Rr measured using a 12-bit ADC.

The simulation setup shown in Figure 2 has been implemented in LTSpice consider-
ing a 12-bit differential input ADC (LTC2311-12) [53], a power supply of Voo =33V, a
value for the reference resistor Rrer of 1 kQ), seven different values for the resistive sensor
Rr (100 €, 250 €, 500 €2, 1000 €2, 2500 €2, 5000 €2, 10,000 €2). The impact of the electrical
noise on the sensor measurement accuracy has been evaluated by placing a white noise
voltage generator (uniformly distributed) between the node Vin+ and the non-inverting
input of the ADC in Figure 2. Nine different values of the white noise peak-to-peak volt-
age were evaluated (1.25 mV, 2.5 mV, 5mV, 10 mV, 20 mV, 33.3 mV, 40 mV, 50 mV, 100
mV). The characteristic of the 12-bit ADC output as function of the resistive sensor value
Rr in the case of noise-free operating condition is presented in Figure 3, where Vour,apc
represents the analog equivalent of the ADC digital output D11D1o ... DiDo. As can be seen,
the characteristic is quasi-linear, with deviations from the linear behavior when the sensor
resistance Rr deviates from the reference resistance Rrer of about one order of magnitude.

1.5+
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Figure 3. Characteristic of the 12-bit ADC output as function of Rr.

3. Simulation Results

The accuracy achieved in the case of a resistive sensor Rt has been evaluated for both
the SMDI-based measurements and the ADC-based measurements according to the oper-
ative conditions described in Section 2.1 and Section 2.2, respectively. The measured Rr
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has been evaluated in terms of average value and standard deviation, by carrying out 100
simulations for each operative condition. The simulation results for the case of the SMDI-
based measurements are reported in Section 3.1, while the simulations results for the case
of the ADC-based measurements are reported in Section 3.2.

3.1. SMDI-Based Measurements

The average value of the measured resistive sensor Rr is plotted in Figure 4 as func-
tion of the peak-to-peak voltage noise (Vnoiserr), for the case of a sensor resistance of nom-
inal value 5 kQ. As can be seen, the average value of measured Rr decreases linearly with
the increase of Vnisep and deviates from its nominal value as Vnoise PP increases.
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Figure 4. Average value of the measured Rr as function of the peak-to-peak voltage noise in the case

of a sensor of nominal value 5 kQ.

The measured values of Rt are presented in Table 1, in terms of average value (p) and
standard deviation (o), as function of the nominal value of the sensor resistance and the
peak-to-peak voltage noise.

Table 1. Measured values of Rr (average value and standard deviation) using the sensor-to-micro-
controller direct interface technique in the case of different nominal values for the sensor resistance

and for different values of the noise level.

Rr (QQ)
100 250 500 1000 2500 5000 10,000
Vioisepr (mV) o pn o pn o pn o un Y u g u g

1.25 101.00 0.08 251.04 0.21 500.89 0.35 10005 0.64 24984 1.04 49936 1.66 99845 3.65
2.5 100.99 0.16 250.88 0.38 500.49 0.56 999.01 1.03 24942 1.78 49856 3.39 9965.6 531
5 10091 0.27 250.68 0.61 498.84 0.87 996.33 1.70 24844 3.10 4963.8 4.47 99254 7.05
10 100.68 0.49 249.12 093 49643 1.48 989.59 2.72 24659 4.39 49196 7.79 98358 129
20 99.41 0.73 246.09 154 48847 201 97134 3.28 24170 7.08 4840.7 10.8 96449 19.6
33.3 9795 0.89 242.02 233 47636 238 950.23 6.57 23663 11.9 4723.0 20.0 94165 32.7
40 9718 1.18 23750 214 472.03 3.92 941.65 542 23318 133 4661.1 184 93022 249
50 9599 1.70 23442 3.09 464.78 435 92523 740 22868 164 45468 185 91002 34.1
100 88.49 2.67 21440 4.68 42473 646 841.96 853 2064.6 29.0 4062.7 19.5 81549 46.5
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As can be seen, as Vnoise PP increases, the average value of the measured Rt decreases
and deviates from its nominal value, while the standard deviation increases. Thus, in the
case of high levels of noise, even if the measured value of Rr is averaged on a large number
of measurements, a good level of accuracy cannot be achieved.

The relative error (in percent) of the measured resistance Rr is evaluated using the
parameter Aerror, that is defined by:

RT,meas - RT

A =100-
ERROR R,

@)

where Rrmeas is the measured value of the sensor while Rr is its nominal value.

The obtained values of Aerror are presented as function of the nominal value of Rr in
Figure 5 for the case of the minimum level of electrical noise (Vrnoisepr = 1.25mV), and in
Figure 6 for the case of the maximum level of noise (Vroisepr = 100 mV).
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Figure 5. Measured Atrror as function of the nominal value of Rt for SMDI-based measurements in

the case of the minimum level of noise (Vnoise.pp = 1.25 mV).
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Figure 6. Measured Atrror as function of the nominal value of Rt for SMDI-based measurements in

the case of the maximum level of noise (Vroiserr = 100 mV).

Data presented in Figures 5 and 6 confirms the results of Table 1. In the case of low
levels of noise (Vnoise.rp = 1.25 mV), the SMDI technique achieves a very good accuracy with
a relative error always lower than 1%, and even lower than 0.2% for values of Rt of 500 Q
or higher. In the case of high levels of noise (Vnoiserr = 100 mV), instead, the achieved rela-
tive error is always very high (>10%).
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3.2. ADC-Based Measurements

The measured values of Rr are presented in Table 2, in terms of average value (p) and
standard deviation (o), as function of the nominal value of the sensor resistance and the
peak-to-peak voltage noise. As can be seen, similarly to the case of SMDI-based measure-
ments, the measured Rr standard deviation increases with the level of noise. However,
differently from SMDI-based measurements, the average value of the measured Rr is al-
most independent of the noise level. Thus, in the case of ADC-based measurements, ac-
curate values of the resistive sensor value can be achieved also in a noisy environment, if
Rr is calculated by averaging on a large number of measurements.

Table 2. Measured values of Rr (average value and standard deviation) using the 12-bit ADC
LTC2311-12 in the case of different values for the sensor resistance and for different values of the

noise level.

Rr (Q)
100 250 500 1000 2500 5000 10,000
Vhoisepr (mV) 1 o un o 1 g u o u Y u g u o
1.25 10248 0.16 24791 0.10 49526 0.19 1003.0 0.64 25349 1.82 50253 4.41 97399 202
2.5 10245 022 24786 0.28 49532 0.35 1003.0 0.64 25353 1.96 50272 594 97422 278
5 102.43 0.41 247.84 0.47 49531 0.61 1003.0 1.02 25355 3.07 5027.2 9.16 97413 34.3
10 102.40 0.83 247.79 091 49523 1.19 10029 191 25353 b5.55 5026.7 16.0 9740.2 52.5
20 102.31 1.62 24770 1.82 49518 231 1002.8 3.83 2534.8 10.9 5026.2 30.8 9737.0 98.6
33.3 102.16 2.76 24755 3.06 495.05 3.84 1002.7 6.32 25345 17.9 50257 50.8 9737.0 159
40 102.10 3.31 24752 3.70 495.01 4.62 10025 7.59 25343 214 50255 604 97345 190
50 102.01 4.14 24744 4.63 494.89 579 10025 9.42 25341 264 50248 749 97328 236
100 101.61 8.28 247.03 9.23 49455 11.6 1002.1 18.9 2533.3 53.5 50225 152 9740.8 470

The values of the relative error (Aerror), as defined in Equation (7), are presented as
function of the nominal value of Rt in Figure 7 for the case of the minimum level of noise
(Vnoisepp = 1.25 mV) and in Figure 8 for the case of the maximum level of noise (Vnoise,pp =
100mV).

As can be seen, in the case of low levels of noise (Vnoisepr = 1.25 mV), measurements
carried out by the SMDI technique are more accurate (average Atrror of 0.28%) than the
ADC-based measurements (average Aerror of 1.29%). On the contrary, in the case of high
levels of noise (Vnoiserr = 100 mV), measurements carried out by the SMDI technique are
less accurate (average Aerror of 15.88%) than the ADC-based measurements (average Aer-
rOR Of 3.27%).
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Figure 7. Measured Aerror as function of the nominal value of Rr for ADC-based measurements in

the case of the minimum level of noise (Vnoiserr = 1.25 mV).
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Figure 8. Measured Aerror as function of the nominal value of Rr for ADC-based measurements in

the case of the maximum level of noise (Vnoise,pr = 100 mV).

4. Discussion

The results presented in Section 3 have shown that, as expected, higher levels of noise
degrade the accuracy of sensor measurements, both in the case of ADC-based measure-
ments and SMDI-based measurements. In the case of ADC-based measurements, how-
ever, the average value of sensor data is almost unaffected by the level of noise, thus an
higher measurement accuracy can be achieved by averaging on a large number of sam-
ples. This is not the case for SMDI-based measurements, where the average value of the
sensor resistance deviates from its nominal value as the noise level increases, thus pre-
venting the possibility to improve the measurement accuracy by averaging on multiple
samples. In this section, the reasons for the strong impact of noise on the accuracy of
SMDI-based measurements are investigated, and a possible mitigation strategy to im-
prove the accuracy of SMDI-based measurements in a noisy environment will be pre-
sented.

The waveforms of the voltage signals acquired during a simulation of the resistive
sensor measurement with SMDI are presented in Figure 9. With reference to Figure 1, the
voltage Vin (input of the Schmitt trigger integrated in the microcontroller GPIO interface)
is presented in the case of a signal with high electrical noise level (100 mV peak-to-peak
amplitude) as well as in the case of the noise free signal.
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T 25
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z165 5
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Figure 9. Waveforms of the voltage signals acquired during a simulation of the resistive sensor

measurement using SMD], in presence and absence of noise.

As can be seen, the presence of the noise results in the triggering of the Schmitt trigger
thresholds (Vu and Vi) before the noise free voltage signal reaches these thresholds. This
results in an increase of the detected Vi and a decrease of the detected Vu, and thus in a
decrease of the measured period Tr as defined by Equation (3). Then, in accordance with
Equation (4), this results in a decrease of the measured sensor resistance Rr, as also shown
in the results of Section 3.1 (Figure 4 and Table 1). Moreover, the impact of the noise on
the measurement accuracy is higher in the case of slower variations of the signal Vi, thus
in the case of higher nominal values of R, as also shown in Figure 6.

To investigate how different types of noise impact on the accuracy of SMDI-based
measurements, we have evaluated the detected average values of the Schmitt trigger
thresholds (Vi and Vu) during a SMDI measurement under different levels of electrical
noise, for Rr = 10kQ, and two different types of noise: uniformly distributed white noise
signal and Gaussian distributed white noise signal. The results are shown as function of
the noise standard deviation (onoise) in Figure 10 for the voltage threshold Vi and in Figure
11 for the voltage threshold Vu, with the average values of Vi and VH calculated by aver-
aging on 1000 measurements. As expected, the threshold voltage VL increases with noise
level, while the threshold voltage Vu decreases with noise level. Moreover, the amount of
deviation of the detected Schmitt trigger threshold voltages from their nominal value
changes for different types of noise: the deviation is stronger for a Gaussian distributed
white noise than for a uniformly distributed white noise.
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Figure 10. Average value of the detected Schmitt trigger threshold Vv as function of the noise level.
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Figure 11. Average value of the detected Schmitt trigger threshold V as function of the noise level.

Based on the obtained results, in order to achieve an acceptable measurement accu-
racy, it is of paramount importance to design a strategy to mitigate the impact of the noise
for resistive sensor measurements carried out by the SMDI technique. A possible solution
is to replace the standard SMDI measurement setup presented in Figure 1 with the pro-
posed measurement setup shown in Figure 12.

microcontroller
B > CS.,
DD - o
> ( SP(J'I
digital output R
& P Outpnit —d : SW
= Driver
- S Connroller :
JODC) | output
;)”1
R

/ IN
nput

pmn (‘

register
i

Figure 12. Proposed measurement setup to mitigate the impact of noise in SMDI-based measure-

digital input

ments of resistive sensors.

The resistor Rr in Figure 12, represents the resistive sensor under test, while Rrt is a
digital potentiometer, and SW is an analog switch controlled by the microcontroller digital
output pins (CSsw and CSror). In normal operating conditions, the switch SW connects the
resistive sensor Rr between the microcontroller input and output pins, and the sensor
value is measured using the procedure described in Section 2.1. The sensor value (Rr) is
calculated by comparing the measured period (Tr) with a set of reference values deter-
mined during a calibration procedure and stored in a look-up table.

The calibration procedure is carried out at regular time intervals to guarantee that all
the measurements carried out after the calibration experience the same noise level as dur-
ing the calibration.

During the calibration procedure, the switch SW is set to disconnect the sensor Rt
and connect the digital potentiometer Rrf between the microcontroller input and output
pins. At this point, the period Tr defined in Equation (2) is measured (by averaging on an
adequate number of measurements) for each value of the digital potentiometer Rret (be-
tween 0 () and the digital potentiometer full scale resistance with step ARret). The look-up
table presenting the measured resistance value for the different values of the measured
period is stored in the microcontroller memory. During the normal operating conditions,
this look-up table is used to estimate the sensor resistance from the measured period Tr.
More accurate estimation of the sensor resistance Rr is possible by using a digital potenti-
ometer with higher resolution (i.e., lower ARvf) but at the cost of higher memory occupa-
tion to store the calibration look-up table.

Simulations have been carried out to evaluate the maximum error in Rr estimation as
function of the digital potentiometer resolution. The simulations have been performed for
the case of uniform white noise with 40 mV peak-to-peak voltage. Both the sensor Rt (dur-
ing the normal operating conditions) and the potentiometer Rrt (during the calibration
procedure) are determined by averaging 50 measurements. A dataset of 50 different Rr
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values was generated with a uniform probability distribution between 100 Q2 and 10 kQ.
The simulation results have shown that the sensor relative error (Asrror as defined in
Equation (7)) decreases, as expected, by increasing the digital potentiometer resolution
(i.e., decreasing ARre): we obtained a value of Aerror of 2.49% for ARret = 25 (), a value of
Aerror Of 2.02% for ARees = 20 O3, a value of Arrror of 1.25% for ARwer = 12.5 QQ, a value of
Aerror of 0.85% for ARret =10 €, and a value of Aerror of 0.46% for ARvet=3.33 Q2. Decreasing
ARret below 3.33 Q does not produce any improvement in the measurement accuracy.

5. Experimental Measurements on a Microcontroller

In this section, the simulation results presented in the previous sections are validated
by experimental measurements carried out on a low-cost microcontroller.

The measurement setup is shown in Figure 13. It consists of a Nucleo-L152RE devel-
opment board that integrates a STM32L152RET6 microcontroller (ST Microelectronics,
Geneva, Switzerland) and a laptop PC that is used to communicate with the microcontrol-
ler board using the USB-UART interface.

Figure 13. Experimental measurement setup to estimate the Schmitt trigger threshold voltages un-

der different noise levels.

The threshold voltages (Vi and Vi) of the Schmitt trigger integrated in an input pin
of the microcontroller have been measured (using the integrated 12-bit DAC) under dif-
ferent noise levels, with the following procedure.

1. The output of the microcontroller DAC is shorted with the input pin to be tested
using a cable. Cables of three different lengths (11.5 cm, 26.5 cm, and 102.5 cm) were
tested, since the longer the cable, the higher the probability that electromagnetic in-
terference degrades the signal-to-noise ratio.

2. Meanwhile, the microcontroller generates an analog voltage at the DAC output that
increases from 0 V to 3.3 V, with steps of 12.89 mV. After the DAC output voltage is
increased to e new value, the microcontroller waits 2 ms to allow the voltage stabili-
zation, and then reads the value of the digital input pin. The Schmitt trigger threshold
Vu is estimated as the DAC output voltage for which the input pin logic value
switches from 0 to 1.

3. Then, the microcontroller generates an analog voltage at the DAC output that de-
creases from 3.3 V to 0 V, with steps of 12.89 mV. Again, after the DAC output voltage
is decreased to a new value, the microcontroller waits 2 ms to allow the voltage
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stabilization, and then reads the value of the digital input pin. The Schmitt trigger
threshold Vi is estimated as the DAC output voltage for which the input pin logic
value switches from 1 to 0.

The values of Vu and Vi have been measured 100 times and the measured values
(average value and standard deviation) are reported in Figure 14 (for Vu) and in Figure
15 (for Vi) as function of the cable length.
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Figure 14. Measured values of the Schmitt trigger threshold voltage Vu as function of the cable
length.
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Figure 15. Measured values of the Schmitt trigger threshold voltage Vi as function of the cable
length.

As can be seen, the measured Schmitt trigger threshold voltage Vu (Vi) decreases
(increases) linearly (high determination coefficient, R? > 0.998) with the cable length, and
thus with the electrical noise level. These experimental measurements confirm the simu-
lation results, where the estimated Schmitt trigger threshold voltages change linearly with
the standard deviation of the white noise signal (Figures 10 and 11).

6. Conclusions

In this paper, it was evaluated the impact of noise on the accuracy of resistive sensor
measurements carried out by the sensor-to-microcontroller direct interface (SMDI) tech-
nique. The study was carried out by electrical level simulations with the software LTSpice
and preliminary experimental measurements. The measurement accuracy of a resistive
sensor was evaluated under different levels of white noise both in the case of SMDI-based
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measurements and ADC-based measurements. The simulation results have shown that,
while in the case of ADC-based measurements the impact of the noise can be mitigated
by averaging on a large number of measurements, in the case of SMDI-based measure-
ments this solution is ineffective. Thus, a mitigation strategy was proposed to allow accu-
rate measurements of resistive sensors using the SMDI technique in a noisy environment.
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