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Abstract

Drones equipped with onboard cameras offer promising potential for modern digital me-
dia and remote sensing applications. However, effectively tracking moving objects in real
time remains a significant challenge. Aerial footage captured by drones often includes
complex scenes with dynamic elements such as people, vehicles, and animals. These sce-
narios may involve large-scale changes in viewing angles, occlusions, and multiple object
crossings occurring simultaneously, all of which complicate accurate object detection and
tracking. This paper presents an autonomous tracking system that leverages the YOLOvS8
algorithm combined with a re-detection mechanism, enabling a quadrotor to effectively
detect and track moving objects using only an onboard camera. To regulate the drone’s
motion, a PID controller is employed, operating based on the target’s position within the
image frame. The proposed system functions independently of external infrastructure
such as motion capture systems or GPS. By integrating both positional and appearance-
based cues, the system demonstrates high robustness, particularly in challenging environ-
ments involving complex scenes and target occlusions. The performance of the optimized
controllers was assessed through extensive real-world testing, involving various trajec-
tory scenarios to evaluate the system’s effectiveness. Results confirmed consistent and ac-
curate detection and tracking of moving objects across all test cases. Furthermore, the sys-
tem exhibited robustness against noise, light reflections, and illumination interference,
ensuring stable object tracking even when implemented on low-cost computing plat-
forms.

Keywords: unmanned aerial vehicle (UAV); YOLOVS; tracking; camera sensors; moving
target

1. Introduction

Autonomous drones often called commercial micro aerial vehicles (MAVs) have long
been integral to robotics and are widely deployed for surveying, surveillance, search-and-
rescue, military operations, and even package delivery. Yet achieving fully autonomous

Eng. Proc. 2025, x, x

https://doi.org/10.3390/xxxxx



Eng. Proc. 2025, x, x FOR PEER REVIEW 2 of 9

quadrotor navigation including stable flight, reliable tracking, and robust obstacle avoid-
ance remains a difficult challenge.

In recent years, unmanned aerial vehicles (UAVs) have seen growing adoption across
many applications, driven by their low operating costs and strong performance. Cameras,
in particular, have emerged as a practical, low-cost sensing option that enables the esti-
mation of rich, information-dense representations of the environment [1]. In computer vi-
sion, visual tracking focuses on automatically estimating an object’s bounding box in each
subsequent frame [2]. Despite strong progress, many high-performing visual tracking
methods remain too computationally heavy for real-time use on UAVs, where long-term
tracking must robustly handle fast motion, scale changes, heavy occlusion, and out-of-
view events while operating within strict onboard processing limits [3]. Many studies on
unmanned aerial vehicles (UAVs) have shown substantial progress toward systems that
operate without human intervention. Consistent with human- and society-centered no-
tions of autonomy, technical systems claiming autonomy must be able to make decisions
and respond to events independently of direct human control [4]. Our system targets GPS-
denied environments (e.g., tunnels, basements) and avoids external infrastructure such as
motion capture or GPS by leveraging image-based detection and tracking to both perform
target tracking and explore vision-driven control of UAVs [5]. By employing detection
and tracking techniques, drones can capture target imagery via onboard cameras and con-
duct real-time analysis to accurately determine the target’s position and orientation [6].
Deep learning has driven significant progress in detection methods over the past few
years. R-CNN [7] applies high-capacity CNNs to bottom-up region proposals for object
localization and segmentation. SPP-net [8] introduces spatial pyramid pooling to remove
the fixed-size input constraint. Building on both, Faster R-CNN [9] unifies proposal gen-
eration and detection, yielding faster training/inference and improved accuracy. Many
detectors most notably SSD [10] tend to underperform at small-object detection. The
YOLO family (YOLO [11], YOLOv2 [12], YOLOV3 [13], and later variants such as YOLOv4
[14]-YOLOVS [15]) is a prominent line of one-stage detectors. YOLOVS achieves state-of-
the-art accuracy and speed, building on prior YOLO advances to suit a wide range of ob-
ject-detection tasks. For our drone, we adopt a streamlined YOLOVS variant to cut com-
putational load, enabling deployment on severely resource-constrained onboard hard-
ware. In recent years, numerous studies have advanced quadrotor guidance and tracking.
Still, designing a robust flight system remains difficult due to the platform’s strongly non-
linear, coupled dynamics. To improve performance on resource-constrained airframes,
researchers have introduced efficient, real-time tracking techniques specifically tailored to
the limited onboard computational capacity of UAVs [16,17]. Bertinetto et al. [18] pro-
posed an end-to-end trainable, fully convolutional Siamese network for visual tracking.
In [19], a quadcopter vision system was developed to track a ground-based moving target,
with switching controllers used to maintain flight stability. Li et al. [20] introduced a
tracker built on a Siamese Region Proposal Network, trained offline on large-scale image
pairs. A ResNet-based Siamese tracker is presented in [21]. We achieve real-time DATMO
[22] on a quadrotor with a single camera by estimating inter-frame UAV motion to syn-
thesize an artificial optical flow, contrasting it with the real optical flow to isolate and
cluster dynamic pixels into moving objects, then tracking them over time to suppress
noise while acknowledging limitations from dependence on accurate motion estimation
and good texture/lighting, sensitivity to parallax, vibration/rolling-shutter, fast maneu-
vers and occlusion, and tight onboard computer. DB-Tracker is a detection-based multi-
object tracker for drone videos that combines RFS-based position modeling (Box-MeM-
Ber) with hierarchical OSNet appearance features and a joint position-appearance cost
matrix, achieving robust results in complex, occluded scenes [23].



Eng. Proc. 2025, x, x FOR PEER REVIEW 3 of 9

In [6], the authors combine a YOLOv4 detector, a SiamMask tracker, and PID attitude
control to deliver efficient, real-time detection and stable target tracking on resource-con-
strained drones indoors and outdoors, experimentally validating systematic model prun-
ing for practical control.

This work uses a UAV with a single monocular RGB camera to develop an accurate,
precise autonomous braking system for indoor environments. The approach pairs a
YOLOV4 object detector with a Kalman filter (KF)-based tracker to enable real-time object
tracking. This study focuses on detecting a ball as the target object. Our system comprises
three core modules (1) object detection, (2) target tracking, and (3) Proportional-Integral—
Derivative (PID) control and we implement and evaluate it on a D]JI Tello drone for end-
to-end detection and tracking.

The structure of the remainder of this paper is as follows: Section 2 presents the ma-
terials and approach used in this study. An explanation of the control strategy is available
in Section 3. Then, Section 4 we explain the experiments results. Section 5 provides the
final conclusions.

2. Materials and Methods

The UAV used in this study is a DJI Tello, shown in Figure 1a (https://www.ryzero-
botics.com/tello). Figure 1b depicts the ball used as the target in our system. The ball
moves along a predefined trajectory, and the UAV’s task is to autonomously detect and

continuously track it.

5

(a) (b)
Figure 1. UAV and Ball object. (a) UAV with camera; (b) spherical object (Ball).

The scenario involves a UAV and a single target (a ball) captured by the onboard
camera and followed along a predefined path. And A laptop computer is connected to the
Tello drone via Wi-Fi for communication. For this study, the onboard camera is used to
detect and track the target (ball) in real time. The sensor captures 5-MP still images and
streams 720p video; with electronic image stabilization (EIS), the captured images and
streamed video remain stable even under airframe vibrations [24].

2.1. Target Detection

UAV To track the target with a UAV, we first use YOLOVS to detect it and produce
a 2D image-plane bounding box, which then serves as the measurement for state estima-
tion. The ball in aerial imagery is detected using YOLOvS, whose architecture is shown in
Figure 2 [25]. Before inference, all input images regardless of original size are resized to
640 x 480. We selected YOLOVS as the architecture most likely to succeed for this task, as
it is widely regarded as state-of-the-art offering higher (mAP) and faster inference (lower
latency) on the COCO dataset [26].
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Figure 2. YOLOVS architecture.

The performance and speed of various YOLO versions are compared in Table 1. The
data illustrates a clear trade-off between speed and accuracy, with YOLOv8n being one of
the fastest real-time detectors available, delivering impressive accuracy for its size. In con-
trast, the larger YOLOv8x model achieves 16 mAP higher accuracy, demonstrating a pow-
erful option for tasks where precision is paramount, without sacrificing real-time capabil-

ity.

Table 1. A Comparative Analysis of YOLO Model Performance.

Model mAP FPS Dataset
YOLOv1 63.4 45 vOC
YOLOv1-Tiny 57.1 155 vOC
YOLOvV2 78.6 40 VOC
YOLOv2-Tiny 57.1 244 vVOC
YOLOv3 55.3 20 COCO
YOLOv3-Tiny 33.1 220 COCO
YOLOvV4 65.7 60 COCO
YOLOv4-Tiny 40.2 400 COCO
YOLOv8n 37.3 500 COCO
YOLOv8x 53.9 100 COCO

2.2. Target Tracking

The algorithm uses a single onboard camera to estimate the target’s position in the
environment and track it along its trajectory. Using a Kalman filter, we estimate the ball’s
image-plane center (%, ¥); Figure 3 and guide the UAV for precise tracking; the filter also
predicts the target’s next position, improving robustness during brief detection dropouts.

Figure 3. Ball Definition in the Image Coordinate.
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3. Control Method

This section describes the Proportional-Integral-Derivative (PID) controller used to
steer the drone, enabling smooth and safe tracking of the ball. Leveraging state estimates
from the Kalman filter, the UAV autonomously adjusts its motion to follow the ball’s tra-
jectory. Figure 4 provides an overview of the control architecture.
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Figure 4. PID Control System for UAV.

From the camera stream, the Kalman filter provides the Ball’s estimated image-plane

center (%, ¥); the tracking errors relative to the image center ( e Yeyare

ey =X —x, 1
ey = y— e (2)

which feed the PID law
u(t) = Ky -e(t) + K; f e()dt + Kg - =2 ®)

where K, , K; and K, are the proportional, integral, and derivative coefficients of the
PID controller, respectively.

4. Experiment Results

This section describes a vision-based guidance method integrated with a PID con-
troller for visual detection and tracking. We evaluate the system on a DJI Tello drone con-
nected to a laptop with a single NVIDIA GeForce GTX 1650 GPU to assess robustness and
reliability; the experiments demonstrate stable, successful tracking.

After detection, the UAV aligns to keep the ball at the image center and flies toward
it. Figure 5 illustrates this process: in Figure 5a, the ball appears in the upper-left of the
camera view; in Figure 5b, after tracking, the ball is centered in the frame.
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Figure 5. Autonomous ball detection and tracking.
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Figure 6 evaluates vertical tracking by moving the ball up and down, showing that
the drone can follow these changes. In Figure 6a the ball appears low; after it shifts up-
ward (Figure 6b), the PID controller drives the drone up to track and recenter the target.
Figure 7 shows the response to each maneuver. When a change occurs, the tracking error
briefly increases, then the controller quickly reduces it and returns the system to a stable
state. These results indicate that the designed control system corrects disturbances effec-

tively.

11 Tello 8al Detection
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(@) (b)

Figure 6. Ball Tracking Movement of UAV in Up/Down.
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Figure 7. Error in X, Y, and Z over time.

Our method is designed to balance maximum accuracy with real-time speed. We
chose the large and powerful YOLOv8x model for the computationally intensive task of
initial object detection, ensuring the blue ball is located with high precision. For the sub-
sequent frame-to-frame tracking, we selected a Kalman filter, which is ideal for speed-
critical tasks. This hybrid system, when attached to a DJI Tello’s camera, creates an effec-
tive and engaging tracker that demonstrates high-performance capabilities on a low-cost
drone.

5. Conclusions

The paper details the design and implementation of a UAV-mounted, vision-based
system for autonomous air-target tracking. We use YOLOVS to detect the moving ball in
real time, even when it occupies only a few pixels. Once the target ball is identified, a
Kalman filter-based tracking algorithm is used for visual tracking. We further incorporate
a PID module to compute tracking errors and adjust the drone’s attitude. PID is a classic
feedback controller that derives commands from the proportional (current error), integral
(accumulated error), and derivative (rate of error change) terms to drive the system output
toward the desired setpoint. The PID module uses the ball’s location relative to the image
center and the drone’s state to compute errors and update attitude control for steady tar-
get tracking. Overall, flight tests validate the system’s effectiveness and robustness:
YOLOvS delivers fast, real-time detection, the Kalman filter maintains accurate ball track-
ing, and the PID controller computes attitude corrections that keep the UAV stably locked
on the target.
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