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Abstract 

Drones equipped with onboard cameras offer promising potential for modern digital me-

dia and remote sensing applications. However, effectively tracking moving objects in real 

time remains a significant challenge. Aerial footage captured by drones often includes 

complex scenes with dynamic elements such as people, vehicles, and animals. These sce-

narios may involve large-scale changes in viewing angles, occlusions, and multiple object 

crossings occurring simultaneously, all of which complicate accurate object detection and 

tracking. This paper presents an autonomous tracking system that leverages the YOLOv8 

algorithm combined with a re-detection mechanism, enabling a quadrotor to effectively 

detect and track moving objects using only an onboard camera. To regulate the drone’s 

motion, a PID controller is employed, operating based on the target’s position within the 

image frame. The proposed system functions independently of external infrastructure 

such as motion capture systems or GPS. By integrating both positional and appearance-

based cues, the system demonstrates high robustness, particularly in challenging environ-

ments involving complex scenes and target occlusions. The performance of the optimized 

controllers was assessed through extensive real-world testing, involving various trajec-

tory scenarios to evaluate the system’s effectiveness. Results confirmed consistent and ac-

curate detection and tracking of moving objects across all test cases. Furthermore, the sys-

tem exhibited robustness against noise, light reflections, and illumination interference, 

ensuring stable object tracking even when implemented on low-cost computing plat-

forms. 

Keywords: unmanned aerial vehicle (UAV); YOLOv8; tracking; camera sensors; moving 

target 

 

1. Introduction 

Autonomous drones often called commercial micro aerial vehicles (MAVs) have long 

been integral to robotics and are widely deployed for surveying, surveillance, search-and-

rescue, military operations, and even package delivery. Yet achieving fully autonomous 
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quadrotor navigation including stable flight, reliable tracking, and robust obstacle avoid-

ance remains a difficult challenge. 

In recent years, unmanned aerial vehicles (UAVs) have seen growing adoption across 

many applications, driven by their low operating costs and strong performance. Cameras, 

in particular, have emerged as a practical, low-cost sensing option that enables the esti-

mation of rich, information-dense representations of the environment [1]. In computer vi-

sion, visual tracking focuses on automatically estimating an object’s bounding box in each 

subsequent frame [2]. Despite strong progress, many high-performing visual tracking 

methods remain too computationally heavy for real-time use on UAVs, where long-term 

tracking must robustly handle fast motion, scale changes, heavy occlusion, and out-of-

view events while operating within strict onboard processing limits [3]. Many studies on 

unmanned aerial vehicles (UAVs) have shown substantial progress toward systems that 

operate without human intervention. Consistent with human- and society-centered no-

tions of autonomy, technical systems claiming autonomy must be able to make decisions 

and respond to events independently of direct human control [4]. Our system targets GPS-

denied environments (e.g., tunnels, basements) and avoids external infrastructure such as 

motion capture or GPS by leveraging image-based detection and tracking to both perform 

target tracking and explore vision-driven control of UAVs [5]. By employing detection 

and tracking techniques, drones can capture target imagery via onboard cameras and con-

duct real-time analysis to accurately determine the target’s position and orientation [6]. 

Deep learning has driven significant progress in detection methods over the past few 

years. R-CNN [7] applies high-capacity CNNs to bottom-up region proposals for object 

localization and segmentation. SPP-net [8] introduces spatial pyramid pooling to remove 

the fixed-size input constraint. Building on both, Faster R-CNN [9] unifies proposal gen-

eration and detection, yielding faster training/inference and improved accuracy. Many 

detectors most notably SSD [10] tend to underperform at small-object detection. The 

YOLO family (YOLO [11], YOLOv2 [12], YOLOv3 [13], and later variants such as YOLOv4 

[14]–YOLOv8 [15]) is a prominent line of one-stage detectors. YOLOv8 achieves state-of-

the-art accuracy and speed, building on prior YOLO advances to suit a wide range of ob-

ject-detection tasks. For our drone, we adopt a streamlined YOLOv8 variant to cut com-

putational load, enabling deployment on severely resource-constrained onboard hard-

ware. In recent years, numerous studies have advanced quadrotor guidance and tracking. 

Still, designing a robust flight system remains difficult due to the platform’s strongly non-

linear, coupled dynamics. To improve performance on resource-constrained airframes, 

researchers have introduced efficient, real-time tracking techniques specifically tailored to 

the limited onboard computational capacity of UAVs [16,17]. Bertinetto et al. [18] pro-

posed an end-to-end trainable, fully convolutional Siamese network for visual tracking. 

In [19], a quadcopter vision system was developed to track a ground-based moving target, 

with switching controllers used to maintain flight stability. Li et al. [20] introduced a 

tracker built on a Siamese Region Proposal Network, trained offline on large-scale image 

pairs. A ResNet-based Siamese tracker is presented in [21]. We achieve real-time DATMO 

[22] on a quadrotor with a single camera by estimating inter-frame UAV motion to syn-

thesize an artificial optical flow, contrasting it with the real optical flow to isolate and 

cluster dynamic pixels into moving objects, then tracking them over time to suppress 

noise while acknowledging limitations from dependence on accurate motion estimation 

and good texture/lighting, sensitivity to parallax, vibration/rolling-shutter, fast maneu-

vers and occlusion, and tight onboard computer. DB-Tracker is a detection-based multi-

object tracker for drone videos that combines RFS-based position modeling (Box-MeM-

Ber) with hierarchical OSNet appearance features and a joint position–appearance cost 

matrix, achieving robust results in complex, occluded scenes [23]. 
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In [6], the authors combine a YOLOv4 detector, a SiamMask tracker, and PID attitude 

control to deliver efficient, real-time detection and stable target tracking on resource-con-

strained drones indoors and outdoors, experimentally validating systematic model prun-

ing for practical control. 

This work uses a UAV with a single monocular RGB camera to develop an accurate, 

precise autonomous braking system for indoor environments. The approach pairs a 

YOLOv4 object detector with a Kalman filter (KF)–based tracker to enable real-time object 

tracking. This study focuses on detecting a ball as the target object. Our system comprises 

three core modules (1) object detection, (2) target tracking, and (3) Proportional–Integral–

Derivative (PID) control and we implement and evaluate it on a DJI Tello drone for end-

to-end detection and tracking. 

The structure of the remainder of this paper is as follows: Section 2 presents the ma-

terials and approach used in this study. An explanation of the control strategy is available 

in Section 3. Then, Section 4 we explain the experiments results. Section 5 provides the 

final conclusions. 

2. Materials and Methods 

The UAV used in this study is a DJI Tello, shown in Figure 1a (https://www.ryzero-

botics.com/tello). Figure 1b depicts the ball used as the target in our system. The ball 

moves along a predefined trajectory, and the UAV’s task is to autonomously detect and 

continuously track it. 

 
 

(a) (b) 

Figure 1. UAV and Ball object. (a) UAV with camera; (b) spherical object (Ball). 

The scenario involves a UAV and a single target (a ball) captured by the onboard 

camera and followed along a predefined path. And A laptop computer is connected to the 

Tello drone via Wi-Fi for communication. For this study, the onboard camera is used to 

detect and track the target (ball) in real time. The sensor captures 5-MP still images and 

streams 720p video; with electronic image stabilization (EIS), the captured images and 

streamed video remain stable even under airframe vibrations [24]. 

2.1. Target Detection 

UAV To track the target with a UAV, we first use YOLOv8 to detect it and produce 

a 2D image-plane bounding box, which then serves as the measurement for state estima-

tion. The ball in aerial imagery is detected using YOLOv8, whose architecture is shown in 

Figure 2 [25]. Before inference, all input images regardless of original size are resized to 

640 × 480. We selected YOLOv8 as the architecture most likely to succeed for this task, as 

it is widely regarded as state-of-the-art offering higher (mAP) and faster inference (lower 

latency) on the COCO dataset [26]. 
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Figure 2. YOLOv8 architecture. 

The performance and speed of various YOLO versions are compared in Table 1. The 

data illustrates a clear trade-off between speed and accuracy, with YOLOv8n being one of 

the fastest real-time detectors available, delivering impressive accuracy for its size. In con-

trast, the larger YOLOv8x model achieves 16 mAP higher accuracy, demonstrating a pow-

erful option for tasks where precision is paramount, without sacrificing real-time capabil-

ity. 

Table 1. A Comparative Analysis of YOLO Model Performance. 

Model mAP FPS Dataset 

YOLOv1  63.4 45 VOC 

YOLOv1-Tiny 57.1 155 VOC 

YOLOv2 78.6 40 VOC 

YOLOv2-Tiny 57.1 244 VOC 

YOLOv3 55.3 20 COCO 

YOLOv3-Tiny 33.1 220 COCO 

YOLOv4 65.7 60 COCO 

YOLOv4-Tiny 40.2 400 COCO 

YOLOv8n 37.3 500 COCO 

YOLOv8x 53.9 100 COCO 

2.2. Target Tracking 

The algorithm uses a single onboard camera to estimate the target’s position in the 

environment and track it along its trajectory. Using a Kalman filter, we estimate the ball’s 

image-plane center (𝑥̂, 𝑦̂); Figure 3 and guide the UAV for precise tracking; the filter also 

predicts the target’s next position, improving robustness during brief detection dropouts. 

 

Figure 3. Ball Definition in the Image Coordinate. 

 

𝑥̂ 

𝑦̂ 



Eng. Proc. 2025, x, x FOR PEER REVIEW 5 of 9 
 

 

3. Control Method 

This section describes the Proportional–Integral–Derivative (PID) controller used to 

steer the drone, enabling smooth and safe tracking of the ball. Leveraging state estimates 

from the Kalman filter, the UAV autonomously adjusts its motion to follow the ball’s tra-

jectory. Figure 4 provides an overview of the control architecture. 

 

Figure 4. PID Control System for UAV. 

From the camera stream, the Kalman filter provides the Ball’s estimated image-plane 

center (𝑥̂, 𝑦̂); the tracking errors relative to the image center ( cx , cy ) are 

𝑒𝑥 = 𝑥̂ − 𝑥𝑐 (1) 

𝑒𝑦 = 𝑦̂ − 𝑦𝑐 (2) 

which feed the PID law 

𝑢(𝑡) =  𝐾𝑝 ⋅ 𝑒(𝑡) + 𝐾𝑖 ∫  
𝑡

0
𝑒(𝑡)𝑑𝑡 + 𝐾𝑑 ⋅

𝑑𝑒(𝑡)

𝑑𝑡
  (3) 

where 𝐾𝑝  , 𝐾𝑖  and 𝐾𝑑  are the proportional, integral, and derivative coefficients of the 

PID controller, respectively. 

4. Experiment Results 

This section describes a vision-based guidance method integrated with a PID con-

troller for visual detection and tracking. We evaluate the system on a DJI Tello drone con-

nected to a laptop with a single NVIDIA GeForce GTX 1650 GPU to assess robustness and 

reliability; the experiments demonstrate stable, successful tracking. 

After detection, the UAV aligns to keep the ball at the image center and flies toward 

it. Figure 5 illustrates this process: in Figure 5a, the ball appears in the upper-left of the 

camera view; in Figure 5b, after tracking, the ball is centered in the frame. 

  
(a) (b) 

Figure 5. Autonomous ball detection and tracking. 
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Figure 6 evaluates vertical tracking by moving the ball up and down, showing that 

the drone can follow these changes. In Figure 6a the ball appears low; after it shifts up-

ward (Figure 6b), the PID controller drives the drone up to track and recenter the target. 

Figure 7 shows the response to each maneuver. When a change occurs, the tracking error 

briefly increases, then the controller quickly reduces it and returns the system to a stable 

state. These results indicate that the designed control system corrects disturbances effec-

tively. 

  
(a) (b) 

Figure 6. Ball Tracking Movement of UAV in Up/Down. 
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Figure 7. Error in X, Y, and Z over time. 

Our method is designed to balance maximum accuracy with real-time speed. We 

chose the large and powerful YOLOv8x model for the computationally intensive task of 

initial object detection, ensuring the blue ball is located with high precision. For the sub-

sequent frame-to-frame tracking, we selected a Kalman filter, which is ideal for speed-

critical tasks. This hybrid system, when attached to a DJI Tello’s camera, creates an effec-

tive and engaging tracker that demonstrates high-performance capabilities on a low-cost 

drone. 

5. Conclusions 

The paper details the design and implementation of a UAV-mounted, vision-based 

system for autonomous air-target tracking. We use YOLOv8 to detect the moving ball in 

real time, even when it occupies only a few pixels. Once the target ball is identified, a 

Kalman filter–based tracking algorithm is used for visual tracking. We further incorporate 

a PID module to compute tracking errors and adjust the drone’s attitude. PID is a classic 

feedback controller that derives commands from the proportional (current error), integral 

(accumulated error), and derivative (rate of error change) terms to drive the system output 

toward the desired setpoint. The PID module uses the ball’s location relative to the image 

center and the drone’s state to compute errors and update attitude control for steady tar-

get tracking. Overall, flight tests validate the system’s effectiveness and robustness: 

YOLOv8 delivers fast, real-time detection, the Kalman filter maintains accurate ball track-

ing, and the PID controller computes attitude corrections that keep the UAV stably locked 

on the target. 
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