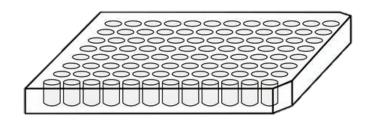
The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

Optimizing Wine Yeast Biomass Production: Effect of Culture Medium Composition in Saccharomyces cerevisiae for Scaling-Up Bioreactor Systems

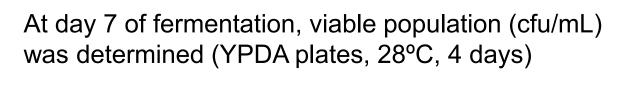
Daniel Fernández-Vázquez, Mar Gatell, Mercè Sunyer-Figueres, Miquel Puxeu, Imma Andorrà Fundació Parc Tecnològic del Vi, Carretera de Porrera km.1, 43730 Falset

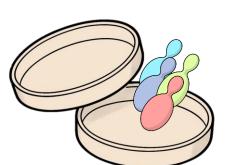
INTRODUCTION & AIM


Large-scale biomass production of *Saccharomyces cerevisiae* is essential for oenological and industrial applications. The efficiency and cost-effectiveness of biomass cultivation depends significantly on the composition of the culture medium. Generally using—beet or sugarcane molasses are used as substrate [1] for biomass production. Molasses are a particularly interesting substrate for yeast growth due to their reduced cost and high sugar concentration (65%–75% sucrose), although they should be supplemented with a nitrogen source and vitamins for optimal growth [1].

Depending on the fermentation phase a different source of nitrogen is used by yeasts to grow, such as ammonium salts and vitamins. Yeast extract and peptone are used as nitrogen sources in laboratory-scale media but their costs are prohibitive for industrial scale production of yeasts in cellars using bioreactors [2], so other common nitrogen sources are needed.

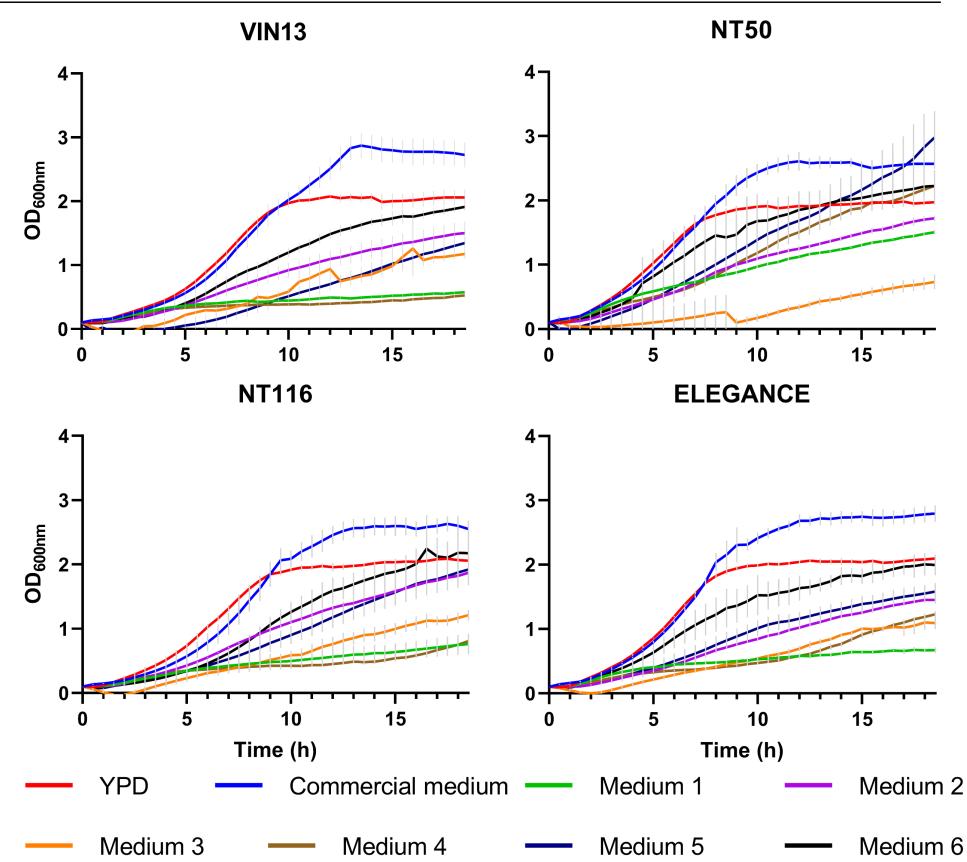
The aim is to study the potential of different nitrogen sources for yeast growth in different culture media for four different commercial *S. cerevisiae* strains.


S. cerevisiae (VIN13, NT50, NT116 ELEGANCE)


96-well plate microfermentations
20 h at 24°C, x5 replicates
no oxigenation or extra feeding agitation
growth monitored by OD_{600nm} each 30 min

Culture media composition:

- YPD (20 g/L D-glucose + 20 g/L peptone + 10 g/L yeast extract)
- Commercial medium (88 g/L commercial dry medium)
- Medium 1 (110 g/L sucrose + 3 g/L diammonium phosphate (DAP) + 2 g/L Malic acid)
- Medium 2 (110 g/L sucrose + 7,5 g/L (NH4)₂SO₄ + 3,5 g/L KH_2PO_4 + 0,75 g/L $MgSO_4$ + 3 g/L DAP)
- Medium 3 (110 g/L sucrose + 20 g/L Actimax Plus (Agrovin) + 2 g/L Malic acid)
- Medium 4 (110 g/L sucrose + 10 g/L Actimax Plus + 1,5 g/L DAP)
- Medium 5 (110 g/L sucrose + 20 g/L Actimax Vit (Agrovin))
- Medium 6 (110 g/L sucrose + 10 g/L Actimax Vit + 1,5 g/L DAP)


CONCLUSIONS

- Similar growth curves for each medium were achieved by all commercial *S. cerevisiae* strains evaluated.
- Culture medium 2 and 5 were discarded by their higher costs respect to the commercial medium.
- Culture medium 3 did not produce satisfactory yeast growth, despite having a composition similar to the commercial medium, as well as medium 1 and 4.
- The culture medium 6, which contains sucrose and Actimax Vit and DAP, achieved higher yeast growth yields than the commercial medium and YPD at 7 days of fermentation and represented a more cost-efficient and promising alternative for biomass production, 0,168 € less per liter.

RESULTS & DISCUSSION

Table 1. Chemical general parameters of culture media evaluated. YAN stands for Yeast Assimilable Nitrogen. n.d. stands for Not detected.

Liquid culture media	Brix pH		YAN (mg/l)	Malic acid (g/L)	
YPD	2,0	7,0	2954,0	n.d.	
Comercial medium	10,9	5 <i>,</i> 5	3090,5	2,7	
Culture medium 1	14,9	5,0	796,6	1,9	
Culture medium 2	17,2	6,3	2392,6	n.d.	
Culture medium 3	16,8	7,2	2727,4	2,9	
Culture medium 4	11,9	7,1	417,7	n.d.	
Culture medium 5	11,2	6,4	76,3	n.d.	
Culture medium 6	11,1	7,0	249,6	n.d.	

Figure 1. Growth curves of 4 different commercial *S. cerevisiae* yeasts (VIN13, NT50, NT116 and ELEGANCE) evaluated in the different culture media. Data is represented by the mean of 5 replicates, and error bars represent standard deviation.

Table 2. Costs of all culture media evaluated by liter of product.

Table 3. Viable cells (cfu/mL) from 5 replicates at day 7 of fermentation.

remember by mer or product	-		•	<u> </u>			
Liquid culture	Total		Viable yeast (cfu/mL)				
medium	(€/L)	Yeast strain	VIN13	NT50	NT116	Elegance	
YPD	5,5740	YPD	9,90E+07	4,90E+07	1,25E+08	1,28E+08	
Comercial medium	0,4444	Comercial medium	1,53E+08	1,06E+08	1,56E+08	1,56E+08	
Culture medium 1	0,1408	Culture medium 1	1,00E+06	1,00E+06	1,00E+06	1,00E+06	
Culture medium 2	0,4628	Culture medium 2	4,00E+07	1,90E+07	7,60E+07	3,10E+07	
Culture medium 3	0,3826	Culture medium 3	7,30E+07	4,90E+07	6,00E+07	6,30E+07	
Culture medium 4	0,2239	Culture medium 4	2,29E+08	1,74E+08	8,50E+07	1,03E+08	
Culture medium 5	0,4486	Culture medium 5	1,84E+08	1,26E+08	8,10E+08	7,26E+08	
Culture medium 6	0,2758	Culture medium 6	3,65E+08	5,24E+08	7,66E+08	3,43E+08	

REFERENCES

- [1] Pérez-Torrado, R., Bruno-Bárcena, J. M., and Matallana, E. (2005). Monitoring stress-related genes during the process of biomass propagation of *Saccharomyces cerevisiae* strains used for wine making. Appl. Environ. Microbiol. 71, 6831–6837. doi: 10.1128/AEM.71.11.6831-6837.2005.
- [2] A. Tropea, D. Wilson, N. Cicero, A.G. Potortì, G.L. La Torre, G. Dugo, D. Richardson, K.W. Waldron, Development of minimal fermentation media supplementation for ethanol production using two *Saccharomyces cerevisiae* strains, Nat. Prod. Res. 30 (2015) 1009–1016. doi: 10.1080/14786419.2015.1095748.