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Abstract

Structural Health Monitoring (SHM) systems increasingly require efficient and scalable
methods for identifying structural damage under dynamic loading. Traditional learning-
based SHM models often rely on high-dimensional features or deep architectures, which
may be computationally intensive and difficult to deploy in real-time applications, espe-
cially in scenarios with limited resources or bandwidth constraints. In this work, we pro-
pose a lightweight classification framework based on Hyperdimensional Computing
(HDC) to detect structural damage using vibration-induced features, aiming to reduce
complexity while maintaining detection performance. The proposed method encodes a
rich feature set, including time-domain, frequency-domain, and autoregressive (AR)
model features into high-dimensional binary vectors through a sliding window approach,
capturing temporal variations and local patterns within the signal. A supervised HDC
classifier is trained to distinguish between healthy and damaged structural states using
these compact encodings. The framework enables fast learning and low memory usage,
making it particularly suitable for edge-level SHM applications where real-time pro-
cessing is required. To evaluate the feasibility and effectiveness of the proposed method,
experiments are conducted on vibration data collected from controlled lateral impact tests
on a concrete-filled steel tubular structure. The results validate the method ability to detect
the damage-induced variations in modal frequencies and highlight its potential as a com-
pact, robust, and efficient solution for future SHM systems based on modal data.

Keywords: structural health monitoring (SHM); hyperdimensional computing (HDC);
impact-induced damage; modal frequency; lightweight classification; concrete-filled steel
tube

1. Introduction

Structural Health Monitoring (SHM) plays a critical role in civil engineering, as it not
only monitors the condition of a structure but also provides early warnings as soon as a
damage is nucleated [1]. By leveraging various sensors, SHM systems continuously or
periodically record structural responses (e.g., vibrations or strain components), enabling
the detection of abnormal patterns that may indicate performance degradation due to
damage inception. This capability ensures structural safety and contributes to extending
the service life.
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Existing structural damage detection approaches can be broadly categorized into two
classes. Physics-based approaches identify damage by analyzing changes in the dynamic
characteristics of a structure, such as modal frequencies and mode shapes [2,3]. This ap-
proach is highly dependent on precise physical parameters and boundary conditions,
making it difficult and computationally expensive to establish high-fidelity models for
complex real-world structures. In contrast, data-driven approaches mainly utilize raw sig-
nal data or feature engineering to train machine learning or deep learning algorithms [4].
Although these data-driven methods show good detection performance, they face several
challenges: deep learning models depend on large-scale architectures with millions of pa-
rameters to tune, whereas traditional machine learning algorithms require extensive com-
putational resources for data preprocessing, training and tuning. These limitations lead to
three major bottlenecks —high computational cost, large model size, and long training cy-
cles. As on-site SHM systems are often limited by computing power, memory, and band-
width, deploying and updating such computationally intensive models results difficult
[5], potentially delaying timely damage identification and warning.

As SHM systems evolve towards edge computing and real-time deployment, devel-
oping lightweight online damage classification methods has become crucial. In this con-
text, Hyperdimensional Computing (HDC), a brain-inspired emerging computing para-
digm, offers a promising alternative [6]. HDC encodes information into high-dimensional,
sparse, and randomly distributed vectors, enabling efficient operations in the hyperdi-
mensional space. Its key properties —including hardware-friendliness, low computational
overhead, and minimal memory requirements—make it particularly suitable for over-
coming the aforementioned bottlenecks.

Motivated by this promising scenario, this paper proposes a lightweight structural
damage detection framework based on HDC. The framework operates as follows: accel-
eration signals are first segmented using a fixed-length sliding window, followed by a
segmental feature extraction strategy that generates a 10-dimensional feature vector com-
prising time-domain, frequency-domain, and autoregressive(AR) model features. These
features are then encoded into high-dimensional binary vectors, and a health/damage
classifier is rapidly trained through prototype learning. To evaluate the feasibility of the
proposed framework, lateral impact test data on concrete-filled steel tubes are here ex-
ploited. The experimental results demonstrate that the framework successfully utilizes the
low-memory advantage of HDC, maintaining high classification accuracy while also ver-
ifying its efficiency and practical value in resource-constrained scenarios.

The remainder of this paper is organized as follows: Section 2 introduces the pro-
posed methodology; Section 3 presents the experimental setup and results; finally, Section
4 provides a discussion and some concluding remarks.

2. Methods

In this paper, we introduce a lightweight SHM framework based on HDC. The frame-
work consists of three main stages (see Figure 1): (i) windowing of impact-induced vibra-
tion signals and feature extraction; (ii) encoding of extracted features into hyperdimen-
sional vectors; and (iii) HDC-based classification for training, inference, and evaluation.

2.1. Signal Processing and Feature Extraction

Structural damage is often caused by sudden events such as impacts, leading to non-
stationary and transient vibration responses characterized by signal statistics that evolve
rapidly over time. Traditional global feature extraction methods may obscure critical dam-
age information due to averaging effects. To address this limitation, we employ a sliding
window-based segmental feature extraction strategy.
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Figure 1. Overall workflow of the proposed HDC-based lightweight SHM framework.

2.1.1. Data Processing Workflow

The objective of this strategy is to generate information-rich feature vectors from raw
time-series data for subsequent HDC encoding (see Figure 2). The workflow consists of
three main steps:

e Windowing: A fixed-length window of 2048 data points slides across the original
signal with a 50% overlap. This segmentation converts long time-series signals into
overlapping short-term samples suitable for analysis.

e  Feature computation: For each windowed sample, two types of features are ex-
tracted. First, the sample is divided into T equal-length sub-segments, from which 9
local time—frequency statistical metrics are calculated to characterize short-term var-
iations. In addition, a p-order AR model is fitted to each sample, and its coefficients
are extracted.

e  Feature vector construction: Features from all sub-segments are concatenated, and
vectors across sensors are combined into a final high-dimensional feature represen-
tation for HDC encoding. The hyperparameters T and p are optimized through grid
search with cross-validation.
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Figure 2. Feature extraction process for damage classification.
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2.1.2. Feature Computation and Its Physical Significance

The following selected features are designed to characterize the structural condition
across multiple dimensions, including signal energy, distributional shape, and dynamic
behavior:

e  Root Mean Square (RMS) and Variance: Indicators of vibration energy; damage (e.g.,
cracks) that modifies stiffness and damping, altering the energy dissipation patterns.

e  Maximum and Peak-to-Peak: Sensitive to transient impacts and suitable for captur-
ing sharp responses caused by external or internal damage.

e  Skewness: Measure of the asymmetry in signal distribution. Healthy linear structures
typically produce symmetric responses, while damage can introduce nonlinearities,
leading to skewed distributions.

e  Kurtosis: Sensitive to impulsive components, with high values indicating sharp tran-
sient impacts associated with damage initiation.

e  Spectral Skewness and Spectral Kurtosis: Describe symmetry and peakedness of the
power spectrum. Damage-induced nonlinearities can redistribute energy across fre-
quency bands or generate harmonics.

e  Spectral Power: A weighted spectral power measure emphasizes high-frequency
components, which are often excited by micro-cracks and friction, making them ef-
fective indicators of damage.

e  ARCoefficients: Capture temporal correlations within signals and serve as a compact
“mathematical fingerprint” of structural dynamics [7]. Changes in system properties
(mass, stiffness, damping) due to damage alter these coefficients. The Levinson—-Dur-
bin algorithm is employed for efficient estimation.

Table 1. Summary of the 10 features extracted from vibration signals for damage classification.

Feature Type Feature Computation Formulas

RMS
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N
. 2 1 2
Variance 0% = NZ(x,- )
Time domain i=1
Max Xmax = max(x;)
— 13
Skewness ) ]
° 4
Kurtosis M) ]

Peak-to-Peak Xp2p = max(x;) — min(x;)

( “f> P(f)

Spectral Skewness
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Frequency domain Spectral Kurtosis = (fk by > P(fi)
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Spectral Power Z 2P(fi)
AR model AR Coefficients X = Z aixe_; + &

i=1
* In the formulas, x; represents the time-series signal, N is the length of the sequence, i and o are

the mean and standard deviation, f, and P(f}) represent the frequency and its corresponding

power spectral value, a; are the coefficients of the AR(p) model.
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2.2. Hyperdimensional Encoding

Hyperdimensional encoding is the core of the proposed framework. It transforms the
constructed N-dimensional feature vectors into a high-dimensional binary space, forming
a D-dimensional bipolar hypervector. This process follows the classical position—value
encoding scheme, which involves the following steps:

e Base Hypervector Generation: Two sets of base hypervectors are initialized ran-
domly:

Position Hypervectors: For each of the N feature positions, a unique random bipolar
hypervector is generated, denoted as ID; € {—1,1}°, to represent the identity of the corre-
sponding feature position.

Value Hypervectors: Continuous feature values are linearly quantized into L discrete
levels. Each level j is represented by a unique D-dimensional bipolar value hyperdimen-
sional vector V; € {—1,1}".

e Binding: Given a sample feature vector [fy, f5, ..., fy], each feature f; is mapped to a
quantized level [; € {1, ...,L}. The corresponding position and value hypervectors
are bound through element-wise multiplication (i.e., the XOR operation for bipolar
vectors):

H,=1ID; OV, (1)

e  Bundling: The resulting feature hypervectors {H;} are aggregated into a single sam-
ple hypervector Hggpmpie. This aggregation is achieved via element-wise summation
followed by a sign function:

Hsample = sgn (Z Hi) (2)

i=1
After this transformation, each vibration signal sample is represented by a D-
dimensional bipolar hyperdimensional vector suitable for HDC-based classification.

2.3. HDC Classifier Training and Inference

The classification task is performed using a centroid-based HDC classifier, with dis-
tinct procedures for training and inference.

The training process is single-pass and computationally efficient. For each class c (e.g.,
healthy or damaged), a prototype hyperdimensional vector P, is constructed as:

P, = sgn Z H; 3)

i€D,

where D, is the index set of training samples belonging to class ¢, and each H; is the D-
dimensional hypervector for an individual sample. The resulting vector P, acts as the
unique centroid for its class.

During inference, a query hypervector H, iscompared with all class prototypes. The
class label is assigned based on maximum similarity, where similarity is measured via the
dot product according to:

¢ = arg mCax(Hq -P,) (4)

This simple maximum-similarity decision rule ensures highly efficient classification,
requiring only vector dot products and comparisons.
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2.4. Model Evaluation and Hyperparameter Tuning

To assess model robustness and generalization, we employed 5-fold stratified cross-
validation. Classification performance was evaluated using F1-score, AUC, precision, and
recall, with F1-score serving as the primary metric for hyperparameter optimization. Hy-
perparameters tuned included the number of sub-segments T, the AR model order p, the
hyperdimensional vector dimensionality D, and the quantization levels L.

3. Experiments and Results
3.1. Experiment Setup and Data Acquisition

The proposed framework was validated on data from controlled lateral impact tests
on a concrete-filled steel tube (CFST) structure. The experimental workflow consisted of
three stages, see Figure 3: intact-state testing, damage application, and post-damage test-
ing:

e Intact-State Data Acquisition: The undamaged specimen was placed on rubber pads
to simulate free-free boundary conditions. An instrumented hammer struck 15 pre-
defined points on the steel tube, and acceleration and force signals were recorded
using the deployed HBK 4508-B-003 piezoelectric accelerometers [8] and a hammer
force sensor. Each point was struck five times to reduce random error.

e  Impact Damage Application: The specimen was then subjected to a single lateral im-
pact using an impact testing apparatus to induce internal damage.

e  Damaged-State Data Acquisition: Post-impact vibration responses were collected fol-
lowing the same procedure as the intact-state testing. All signals were sampled at
25,000 Hz to ensure accurate capture of high-frequency vibration components.

e Dataset Construction. Signal data collected before the impact were labeled as
“Healthy” (label 0), and post-impact data as “Damaged” (label 1). Using the sliding-
window procedure described in Section 2.1, a series of labeled samples was gener-
ated to form the dataset for training and evaluation.

(©)

Figure 3. Experimental setup of lateral impact testing on CEST specimen. (a) Lateral impact testing

apparatus (b) Intact CFST specimen before impact, and (c) Damaged CFST specimen after impact.

3.2. Implementation and Evaluation

To assess the model performance, it is compared with two well-established machine
learning classifiers: Support Vector Machine (SVM) and Random Forest. All models were
evaluated using a 5-fold stratified cross-validation approach to ensure robustness. Classi-
fication performance was measured using F1-score, AUC, precision, and recall, with F1-
score serving as the primary metric for optimization.
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A grid search was performed to optimize the hyperparameters for the HDC frame-
work. The optimal configuration was found to be T =5 (number of sub-segments), p =5
(AR model order), D = 60,000 (hyper-vector dimensionality), and L=100 (quantization lev-
els). All subsequent evaluations were conducted using these settings.

3.3. Results and Analysis
3.3.1. Classification Performance

Under the optimal configuration, the HDC framework achieved excellent classifica-
tion performance (see Figure 4), demonstrating its effectiveness in distinguishing between
healthy and damaged structural states. Table 2 summarizes the performance of the HDC
model alongside the benchmark SVM and Random Forest classifiers.

Confusion Matrix Receiver Operating Characteristic (ROC) Curve

08 ol

Normal

o

o

\
N\,

- 400

True Label

- 300

True Positive Rate
N\,

o

~

\,
N\,

- 200 e

Impact

02 .
-100 e

’ ROC curve (AUC = 0.8880)
Normal Impact 00 “

Predicted Label 0.0 0.2 0.4 06 0.8 1.0
False Positive Rate

() (b)
Figure 4. Performance of HDC. (a) Confusion matrix, and (b) ROC curve.

Table 2. Comparison of Classification Performance.

Model F1-score AUC Precision Recall
HDC 0.9808 0.8812 0.9810 0.9808
SVM 0.9903 0.9998 0.9904 0.9903

Random Forest 0.9988 1.0000 0.9988 0.9988

3.3.2. Comparative Analysis

The results indicate that the proposed HDC framework achieves highly accurate
damage detection, with an F1-score exceeding 98%. This validates the effectiveness of the
sliding-window feature extraction strategy and the HDC encoding-classification pipeline.

While the SVM and Random Forest models show slightly higher scores in this offline
analysis, the HDC model performance is highly competitive and well within the accepta-
ble range for reliable SHM systems. More importantly, this high accuracy was achieved
within a “lightweight” paradigm. Unlike SVM or Random Forest, which can be computa-
tionally intensive and require significant memory, the HDC framework is designed for
efficiency, making it uniquely suited for on-site, real-time deployment on edge devices
with limited resources. The minor trade-off in accuracy is offset by substantial gains in
computational efficiency and a smaller memory footprint, which are critical bottlenecks
in modern SHM applications.
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4. Discussion and Conclusions

This study demonstrates that a lightweight HDC framework can accurately identify
structural impact damage while maintaining low computational overhead. The high F1-
score attained in a benchmark test confirms that the sliding window-based segmental fea-
ture extraction, including AR model features, effectively captures dynamic and statistical
characteristics indicative of the structural health. Importantly, these results were achieved
using a computationally efficient and memory-light paradigm, highlighting that high-pre-
cision damage detection does not necessarily require complex deep learning architectures
or computationally intensive models. In summary, the proposed HDC framework pro-
vides a highly promising solution for real-time SHM applications, particularly in edge-
computing scenarios where computational resources and memory are constrained.

Nevertheless, a limitation of the proposed framework is its resolution capability.
While the approach effectively identifies and classifies macroscopic damage, its ability to
detect localized defects remains limited. This limitation stems from the reliance on modal
features, which characterize the global structural behavior but may overlook subtle local
variations. Future work will focus on enhancing sensitivity to small-scale damage by in-
corporating local descriptors, such as semi-wave energy or wavelet-based features. Addi-
tionally, the framework will be extended to more complex structural systems and inves-
tigate the potential for hardware acceleration to further leverage HDC efficiency ad-
vantages.
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