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Abstract 

Structural Health Monitoring (SHM) systems increasingly require efficient and scalable 

methods for identifying structural damage under dynamic loading. Traditional learning-

based SHM models often rely on high-dimensional features or deep architectures, which 

may be computationally intensive and difficult to deploy in real-time applications, espe-

cially in scenarios with limited resources or bandwidth constraints. In this work, we pro-

pose a lightweight classification framework based on Hyperdimensional Computing 

(HDC) to detect structural damage using vibration-induced features, aiming to reduce 

complexity while maintaining detection performance. The proposed method encodes a 

rich feature set, including time-domain, frequency-domain, and autoregressive (AR) 

model features into high-dimensional binary vectors through a sliding window approach, 

capturing temporal variations and local patterns within the signal. A supervised HDC 

classifier is trained to distinguish between healthy and damaged structural states using 

these compact encodings. The framework enables fast learning and low memory usage, 

making it particularly suitable for edge-level SHM applications where real-time pro-

cessing is required. To evaluate the feasibility and effectiveness of the proposed method, 

experiments are conducted on vibration data collected from controlled lateral impact tests 

on a concrete-filled steel tubular structure. The results validate the method ability to detect 

the damage-induced variations in modal frequencies and highlight its potential as a com-

pact, robust, and efficient solution for future SHM systems based on modal data. 
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tube 

 

1. Introduction 

Structural Health Monitoring (SHM) plays a critical role in civil engineering, as it not 

only monitors the condition of a structure but also provides early warnings as soon as a 

damage is nucleated [1]. By leveraging various sensors, SHM systems continuously or 

periodically record structural responses (e.g., vibrations or strain components), enabling 

the detection of abnormal patterns that may indicate performance degradation due to 

damage inception. This capability ensures structural safety and contributes to extending 

the service life. 
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Existing structural damage detection approaches can be broadly categorized into two 

classes. Physics-based approaches identify damage by analyzing changes in the dynamic 

characteristics of a structure, such as modal frequencies and mode shapes [2,3]. This ap-

proach is highly dependent on precise physical parameters and boundary conditions, 

making it difficult and computationally expensive to establish high-fidelity models for 

complex real-world structures. In contrast, data-driven approaches mainly utilize raw sig-

nal data or feature engineering to train machine learning or deep learning algorithms [4]. 

Although these data-driven methods show good detection performance, they face several 

challenges: deep learning models depend on large-scale architectures with millions of pa-

rameters to tune, whereas traditional machine learning algorithms require extensive com-

putational resources for data preprocessing, training and tuning. These limitations lead to 

three major bottlenecks—high computational cost, large model size, and long training cy-

cles. As on-site SHM systems are often limited by computing power, memory, and band-

width, deploying and updating such computationally intensive models results difficult 

[5], potentially delaying timely damage identification and warning. 

As SHM systems evolve towards edge computing and real-time deployment, devel-

oping lightweight online damage classification methods has become crucial. In this con-

text, Hyperdimensional Computing (HDC), a brain-inspired emerging computing para-

digm, offers a promising alternative [6]. HDC encodes information into high-dimensional, 

sparse, and randomly distributed vectors, enabling efficient operations in the hyperdi-

mensional space. Its key properties—including hardware-friendliness, low computational 

overhead, and minimal memory requirements—make it particularly suitable for over-

coming the aforementioned bottlenecks. 

Motivated by this promising scenario, this paper proposes a lightweight structural 

damage detection framework based on HDC. The framework operates as follows: accel-

eration signals are first segmented using a fixed-length sliding window, followed by a 

segmental feature extraction strategy that generates a 10-dimensional feature vector com-

prising time-domain, frequency-domain, and autoregressive(AR) model features. These 

features are then encoded into high-dimensional binary vectors, and a health/damage 

classifier is rapidly trained through prototype learning. To evaluate the feasibility of the 

proposed framework, lateral impact test data on concrete-filled steel tubes are here ex-

ploited. The experimental results demonstrate that the framework successfully utilizes the 

low-memory advantage of HDC, maintaining high classification accuracy while also ver-

ifying its efficiency and practical value in resource-constrained scenarios. 

The remainder of this paper is organized as follows: Section 2 introduces the pro-

posed methodology; Section 3 presents the experimental setup and results; finally, Section 

4 provides a discussion and some concluding remarks. 

2. Methods 

In this paper, we introduce a lightweight SHM framework based on HDC. The frame-

work consists of three main stages (see Figure 1): (i) windowing of impact-induced vibra-

tion signals and feature extraction; (ii) encoding of extracted features into hyperdimen-

sional vectors; and (iii) HDC-based classification for training, inference, and evaluation. 

2.1. Signal Processing and Feature Extraction 

Structural damage is often caused by sudden events such as impacts, leading to non-

stationary and transient vibration responses characterized by signal statistics that evolve 

rapidly over time. Traditional global feature extraction methods may obscure critical dam-

age information due to averaging effects. To address this limitation, we employ a sliding 

window-based segmental feature extraction strategy. 



Eng. Proc. 2025, x, x FOR PEER REVIEW 3 of 9 
 

 

Alert SystemEdge monitoring system HDC Core Processing

Data Acquisition

Raw Acceleration Signals

Data windowing

Sliding Window Segmentation

Statistical Features&AR model Feature

Feature Extration

&

Hyperdimensional Encoding

Sample Hypervetors

1 -1

1-1

-1

-1

1 1

1

-1

-1 -1

-1 1 1 -1

-1

1

1 -1 -1

-1 1 -1

11 -1 1 -1 1 1 -1

HDC Classifier

Training Inference

1 -1

1-1

-1

-1

1 1

-1

Prototype

Sample Hypervetors

1 -1

-11

-1

-1

1 1

1

New Sample Hypervetors

Similarity 

Measurement

Output

Health 

Damage

 

Figure 1. Overall workflow of the proposed HDC-based lightweight SHM framework. 

2.1.1. Data Processing Workflow 

The objective of this strategy is to generate information-rich feature vectors from raw 

time-series data for subsequent HDC encoding (see Figure 2). The workflow consists of 

three main steps: 

• Windowing: A fixed-length window of 2048 data points slides across the original 

signal with a 50% overlap. This segmentation converts long time-series signals into 

overlapping short-term samples suitable for analysis. 

• Feature computation: For each windowed sample, two types of features are ex-

tracted. First, the sample is divided into T equal-length sub-segments, from which 9 

local time–frequency statistical metrics are calculated to characterize short-term var-

iations. In addition, a p-order AR model is fitted to each sample, and its coefficients 

are extracted. 

• Feature vector construction: Features from all sub-segments are concatenated, and 

vectors across sensors are combined into a final high-dimensional feature represen-

tation for HDC encoding. The hyperparameters T and p are optimized through grid 

search with cross-validation. 
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Figure 2. Feature extraction process for damage classification. 
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2.1.2. Feature Computation and Its Physical Significance 

The following selected features are designed to characterize the structural condition 

across multiple dimensions, including signal energy, distributional shape, and dynamic 

behavior: 

• Root Mean Square (RMS) and Variance: Indicators of vibration energy; damage (e.g., 

cracks) that modifies stiffness and damping, altering the energy dissipation patterns. 

• Maximum and Peak-to-Peak: Sensitive to transient impacts and suitable for captur-

ing sharp responses caused by external or internal damage. 

• Skewness: Measure of the asymmetry in signal distribution. Healthy linear structures 

typically produce symmetric responses, while damage can introduce nonlinearities, 

leading to skewed distributions. 

• Kurtosis: Sensitive to impulsive components, with high values indicating sharp tran-

sient impacts associated with damage initiation. 

• Spectral Skewness and Spectral Kurtosis: Describe symmetry and peakedness of the 

power spectrum. Damage-induced nonlinearities can redistribute energy across fre-

quency bands or generate harmonics. 

• Spectral Power: A weighted spectral power measure emphasizes high-frequency 

components, which are often excited by micro-cracks and friction, making them ef-

fective indicators of damage. 

• AR Coefficients: Capture temporal correlations within signals and serve as a compact 

“mathematical fingerprint” of structural dynamics [7]. Changes in system properties 

(mass, stiffness, damping) due to damage alter these coefficients. The Levinson–Dur-

bin algorithm is employed for efficient estimation. 

Table 1. Summary of the 10 features extracted from vibration signals for damage classification. 

Feature Type Feature Computation Formulas 

Time domain 

RMS 𝑥𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

Variance σ2 =
1

𝑁
∑(𝑥𝑖 − μ)2

𝑁

𝑖=1

 

Max 𝑥𝑚𝑎𝑥 = max(𝑥𝑖) 

Skewness 𝑆 = 𝐸 [(
𝑥 − μ

σ
)

3

] 

Kurtosis 𝐾 = 𝐸 [(
𝑥 − μ

σ
)

4

] 

Peak-to-Peak 𝑥𝑝2𝑝 = max(𝑥𝑖) − min(𝑥𝑖) 

Frequency domain 

Spectral Skewness 𝑆𝑓 = ∑ (
𝑓𝑘 − μ𝑓

σ𝑓

)

3

𝑃(𝑓𝑘)

𝐾

𝑘=1

 

Spectral Kurtosis 𝐾𝑓 = ∑ (
𝑓𝑘 − μ𝑓

σ𝑓

)

4

𝑃(𝑓𝑘)

𝐾

𝑘=1

 

Spectral Power 𝑃𝑤 = ∑ 𝑓𝑘
3𝑃(𝑓𝑘)

𝐾

𝑘=1

 

AR model AR Coefficients 𝑥𝑡 = ∑ 𝑎𝑖𝑥𝑡−𝑖

𝑝

𝑖=1

+ ε𝑡 

* In the formulas, 𝑥𝑖 represents the time-series signal, N is the length of the sequence, μ and σ are 

the mean and standard deviation, 𝑓𝑘  and 𝑃(𝑓𝑘)  represent the frequency and its corresponding 

power spectral value, 𝑎𝑖 are the coefficients of the AR(p) model. 
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2.2. Hyperdimensional Encoding 

Hyperdimensional encoding is the core of the proposed framework. It transforms the 

constructed N-dimensional feature vectors into a high-dimensional binary space, forming 

a D-dimensional bipolar hypervector. This process follows the classical position–value 

encoding scheme, which involves the following steps: 

• Base Hypervector Generation: Two sets of base hypervectors are initialized ran-

domly: 

Position Hypervectors: For each of the N feature positions, a unique random bipolar 

hypervector is generated, denoted as 𝐼𝐷𝑖 ∈ {−1,1}𝐷, to represent the identity of the corre-

sponding feature position. 

Value Hypervectors: Continuous feature values are linearly quantized into L discrete 

levels. Each level j is represented by a unique D-dimensional bipolar value hyperdimen-

sional vector 𝑉𝑗 ∈ {−1,1}𝐷. 

• Binding: Given a sample feature vector [𝑓1, 𝑓2, … , 𝑓𝑁], each feature 𝑓𝑖 is mapped to a 

quantized level 𝑙𝑖 ∈ {1, … , 𝐿} . The corresponding position and value hypervectors 

are bound through element-wise multiplication (i.e., the XOR operation for bipolar 

vectors): 

𝐻𝑖 = 𝐼𝐷𝑖 ⊙ 𝑉𝑙𝑖
 (1) 

• Bundling: The resulting feature hypervectors {𝐻𝑖} are aggregated into a single sam-

ple hypervector 𝐻𝑠𝑎𝑚𝑝𝑙𝑒 . This aggregation is achieved via element-wise summation 

followed by a sign function: 

𝐻sample = sgn (∑ 𝐻𝑖

𝑁

𝑖=1

) (2) 

After this transformation, each vibration signal sample is represented by a D-

dimensional bipolar hyperdimensional vector suitable for HDC-based classification. 

2.3. HDC Classifier Training and Inference 

The classification task is performed using a centroid-based HDC classifier, with dis-

tinct procedures for training and inference. 

The training process is single-pass and computationally efficient. For each class c (e.g., 

healthy or damaged), a prototype hyperdimensional vector 𝑃𝑐 is constructed as: 

𝑃𝑐 = sgn ( ∑ 𝐻𝑖

𝑖∈𝒟𝒸

) (3) 

where 𝐷𝑐  is the index set of training samples belonging to class c, and each 𝐻𝑖  is the D-

dimensional hypervector for an individual sample. The resulting vector 𝑃𝑐  acts as the 

unique centroid for its class. 

During inference, a query hypervector 𝐻𝑞  is compared with all class prototypes. The 

class label is assigned based on maximum similarity, where similarity is measured via the 

dot product according to: 

𝑐̂ = arg max
𝑐

(𝐻𝑞 ⋅ 𝑃𝑐) (4) 

This simple maximum-similarity decision rule ensures highly efficient classification, 

requiring only vector dot products and comparisons. 
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2.4. Model Evaluation and Hyperparameter Tuning 

To assess model robustness and generalization, we employed 5-fold stratified cross-

validation. Classification performance was evaluated using F1-score, AUC, precision, and 

recall, with F1-score serving as the primary metric for hyperparameter optimization. Hy-

perparameters tuned included the number of sub-segments 𝑇, the AR model order 𝑝, the 

hyperdimensional vector dimensionality 𝐷, and the quantization levels 𝐿. 

3. Experiments and Results 

3.1. Experiment Setup and Data Acquisition 

The proposed framework was validated on data from controlled lateral impact tests 

on a concrete-filled steel tube (CFST) structure. The experimental workflow consisted of 

three stages, see Figure 3: intact-state testing, damage application, and post-damage test-

ing: 

• Intact-State Data Acquisition: The undamaged specimen was placed on rubber pads 

to simulate free-free boundary conditions. An instrumented hammer struck 15 pre-

defined points on the steel tube, and acceleration and force signals were recorded 

using the deployed HBK 4508-B-003 piezoelectric accelerometers [8] and a hammer 

force sensor. Each point was struck five times to reduce random error. 

• Impact Damage Application: The specimen was then subjected to a single lateral im-

pact using an impact testing apparatus to induce internal damage. 

• Damaged-State Data Acquisition: Post-impact vibration responses were collected fol-

lowing the same procedure as the intact-state testing. All signals were sampled at 

25,000 Hz to ensure accurate capture of high-frequency vibration components. 

• Dataset Construction. Signal data collected before the impact were labeled as 

“Healthy” (label 0), and post-impact data as “Damaged” (label 1). Using the sliding-

window procedure described in Section 2.1, a series of labeled samples was gener-

ated to form the dataset for training and evaluation. 

 

Figure 3. Experimental setup of lateral impact testing on CFST specimen. (a) Lateral impact testing 

apparatus (b) Intact CFST specimen before impact, and (c) Damaged CFST specimen after impact. 

3.2. Implementation and Evaluation 

To assess the model performance, it is compared with two well-established machine 

learning classifiers: Support Vector Machine (SVM) and Random Forest. All models were 

evaluated using a 5-fold stratified cross-validation approach to ensure robustness. Classi-

fication performance was measured using F1-score, AUC, precision, and recall, with F1-

score serving as the primary metric for optimization. 

(a)

(b)

(c)
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A grid search was performed to optimize the hyperparameters for the HDC frame-

work. The optimal configuration was found to be T = 5 (number of sub-segments), p = 5 

(AR model order), D = 60,000 (hyper-vector dimensionality), and L=100 (quantization lev-

els). All subsequent evaluations were conducted using these settings. 

3.3. Results and Analysis 

3.3.1. Classification Performance 

Under the optimal configuration, the HDC framework achieved excellent classifica-

tion performance (see Figure 4), demonstrating its effectiveness in distinguishing between 

healthy and damaged structural states. Table 2 summarizes the performance of the HDC 

model alongside the benchmark SVM and Random Forest classifiers. 

 

Figure 4. Performance of HDC. (a) Confusion matrix, and (b) ROC curve. 

Table 2. Comparison of Classification Performance. 

Model F1-score AUC Precision Recall 

HDC 0.9808 0.8812 0.9810 0.9808 

SVM 0.9903 0.9998 0.9904 0.9903 

Random Forest 0.9988 1.0000 0.9988 0.9988 

3.3.2. Comparative Analysis 

The results indicate that the proposed HDC framework achieves highly accurate 

damage detection, with an F1-score exceeding 98%. This validates the effectiveness of the 

sliding-window feature extraction strategy and the HDC encoding-classification pipeline. 

While the SVM and Random Forest models show slightly higher scores in this offline 

analysis, the HDC model performance is highly competitive and well within the accepta-

ble range for reliable SHM systems. More importantly, this high accuracy was achieved 

within a “lightweight” paradigm. Unlike SVM or Random Forest, which can be computa-

tionally intensive and require significant memory, the HDC framework is designed for 

efficiency, making it uniquely suited for on-site, real-time deployment on edge devices 

with limited resources. The minor trade-off in accuracy is offset by substantial gains in 

computational efficiency and a smaller memory footprint, which are critical bottlenecks 

in modern SHM applications. 

  

(a) (b)



Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 9 
 

 

4. Discussion and Conclusions 

This study demonstrates that a lightweight HDC framework can accurately identify 

structural impact damage while maintaining low computational overhead. The high F1-

score attained in a benchmark test confirms that the sliding window-based segmental fea-

ture extraction, including AR model features, effectively captures dynamic and statistical 

characteristics indicative of the structural health. Importantly, these results were achieved 

using a computationally efficient and memory-light paradigm, highlighting that high-pre-

cision damage detection does not necessarily require complex deep learning architectures 

or computationally intensive models. In summary, the proposed HDC framework pro-

vides a highly promising solution for real-time SHM applications, particularly in edge-

computing scenarios where computational resources and memory are constrained. 

Nevertheless, a limitation of the proposed framework is its resolution capability. 

While the approach effectively identifies and classifies macroscopic damage, its ability to 

detect localized defects remains limited. This limitation stems from the reliance on modal 

features, which characterize the global structural behavior but may overlook subtle local 

variations. Future work will focus on enhancing sensitivity to small-scale damage by in-

corporating local descriptors, such as semi-wave energy or wavelet-based features. Addi-

tionally, the framework will be extended to more complex structural systems and inves-

tigate the potential for hardware acceleration to further leverage HDC efficiency ad-

vantages. 
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