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Introduction

The driving force behind the present study has been to overcome the difficulties you encounter when
trying to extend the clear and convincing operational interpretations associated with classical information
theory as developed by Shannon [1] and followers, to the theory promoted by Tsallis for statistical
physics and thermodynamics, cf. [2], [3]. That there are difficulties is witnessed by the fact that some
physicists do not recognize the new theory as sound - despite the apparent success of Tsallis and hes
followers. Evidence of this attitude may be found in Gross [4] and in Shalizi’s notes [5].
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As it will turn out, if you accept a certain kind of interaction between truth, belief and knowledge,
you are led in a natural way to the family of Tsallis entropies, cf. Section 21. Further study revealed
that the philosophical elements of the indicated approach make sense in a much wider setting than
originally intended. One does not achieve the same degree of clarity as in classical Shannon theory,
where coding provides a solid reference. However, we shall demonstrate that the extension to a more
abstract framework is meaningful and opens up for new areas of research. In addition, known results are
consolidated and unified.

Our study falls into two parts. In Part I, an abstract theory of information without probability is
presented. It is based on somewhat speculative considerations which, taken together, constitute possible
paradigms of cognition. Inspiration from Shannon Theory and from the theory of inference within
statistics and statistical physics is apparent. However, the ideas are here presented as an independent
theory.

Previous endeavours in the direction taken includes research by Ingarden and Urbanik [6] who wrote
“... information seems intuitively a much simpler and more elementary notion than that of probability
... [it] represents a more primary step of knowledge than that of cognition of probability ...”. We also
point to Kolmogorov, cf. [7] and [8] who in the latter reference (but going back to 1970 it seems) stated
“Information theory must preceed probability theory and not be based on it”. The ideas by Ingarden and
Urbanik were taken up by Kampé de Fériet, see the survey [9]. The work of Kampé de Fériet is rooted in
logic. Logic is also a key ingredient in comprehensive studies over some 40 years by Jaynes, collected
posthumously in [10]. Though many philosophically oriented discussions are contained in the work of
Jaynes, the situations dealt with are probabilistic in nature and intended mainly for a study of statistical
physics.

In complexity theory as developed by Solomonoff, Kolmogorov and others, cf. the recent survey
[11] by Rathmanner and Hutter, we have a highly theoretical discipline which aims at inference
not necessarily tied to probabilistic modelling. The Minimum Description Length Principle may be
considered an important spin-off of this theory. It is mainly directed at problems of statistical inference
and was developed, primarily, by Rissanen and by Barron and Yu, cf. [12]. We also point to the
treatise [13] by Grünwald. There you find discussions of many of the issues dealt with here, including a
discussion of the work of Jaynes.

Still other areas of research have a bearing on “information without probability”, e.g. semiotics,
philosophy of information, pragmatism, symbolic linguistics, placebo research, social information and
learning theory. Many areas within psychology are also of relevance. Some specific works of interest
include Jumarie [14], Shafer and Vovk [15], Gernert [16], Bundesen and Habekost [17], Benedetti [18]
and Brier [19]. The handbook [20] edited by Adriaans and Bentham and the encyklopedia article [21]
by Adriaans collect views on the very concept of information. Over the years, an overwhelming amount
of thoughts has been devoted to that concept in one form or another. Most of this bulk of material
is entirely philosophical and not open to quantitative analysis. Part of it is impractical and presently
mainly of theoretical interest. And some is far from Shannon’s theory which we hold as a corner stone
of quantitative information theory. In fact, we consider it a requirement of any quantitative theory of
information to be downward compatible with basic parts of Shannon theory. This requirement is largely
respected in the present work. But not entirely. For example, it is doubtful if one can meaningfully lift
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the concept of coding as known from Shannon theory to a more abstract level. Likewise, the notion
of conditioning and the concept of mutual information may best be studied in an abstract setting after
introducing more structure.

We thus attempt “to go beyond Shannon”. So does e.g. Brier in his development of cybersemiotics,
cf. [22], [19]. Brier goes deeper into some of the philosophical aspects than we do and also attempts a
broad coverage by incorporating not only the exact natural sciences but also life science, the humanities
and the social sciences. On the other hand, our study aims at more concrete results by basing the study
more directly on quantitative elements. Both studies emphasize the role of the individual in the cognitive
process. Further studies of what appears to be an intensified field of research may lead to a certain
unification and general agreement.

A special feature of our development is the appeal to basic game theoretical considerations, cf.
especially Sections 10 and 11. To illuminate the importance we attach to this aspect we quote from
Jaynes preface to [10] where he comments on the maximum entropy principle, the central principle of
inference promoted by Jaynes:

“... it [maximum entropy] predicts only observable facts (functions of future or past observations)
rather than values of parameters which may exist only in our imagination ... it protects us against
drawing conclusions not warranted by the data. But when the information is extremely vague, it may
be difficult to define any appropriate sample space, and one may wonder whether still more primitive
principles than maximum entropy can be found. There is room for much new creative thought here. ”
This is where game theory comes in. It represents a main addition, we claim, to Jaynes’ work 1. The
merits of game theory in relation to information theoretical inference were presented in the probabilistic,
Shannon-like setting, independently of eachother, by Pfaffelhuber [24] and the author [25]. These works
were often overlooked by subsequent authors2. More recent references include Harremoës and Topsøe
[26], Grünwald and Dawid [27], Friedman et al [28] (a utility-based work) and Dayi [29]. As sources of
background material, [30], [31] and [32] may be helpful.

Apart from introducing game theory into the picture, a main feature of the present work lies in its
abstract nature with a focus on interpretations rather than on axiomatics which was the emphasis of
many previous authors, including Jaynes.

Part II is devoted to applications and may be viewed as a justification of the partly speculative
deliberations of Part I. The applications come from combinatorial geometry, probabilistic information
theory, statistics and statistical physics. For most of them, we focus on providing the key notions needed
for the theory to work, thus largely leaving concrete applications aside. The aim is to provide enough
details in order to demonstrate that our modelling can be applied in quite different contexts. For the case
of discrete probabilistic models we do, however, embark on a more thorough analysis. The reason is,
firstly, that this is what triggered the research reported on and, secondly, with a thorough discussion of

1 At the conference “Maximum Entropy and Bayesian Methods”, Paris 1993, the author had much hoped to discuss the
impact of game theoretical reasoning with professor Jaynes. Unfortunately, Jaynes, who died in 1998, was too ill at the
time to participate and thus did not take into account arguments such as those in [23] which support the theory developed
by Jaynes.

2 admittedly, also the present author only some 15 years ago became aware of [24]!
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modelling in this context, virtually all elements introduced in Part I have a clear and natural meaning. In
fact, full appreciation of the abstract theory may only be achieved after reading the material in Section
21.

Our treatment is formally developed independently of previous research. However, unconsciously or
not, it depends on earlier studies as referred to above and on the tradition developed over time. More
specifically, we mention that our focus on description effort, especially the notion of properness, cf.
Section 6, is closely related to ideas first developed for areas touching on meteorology, statistics and
information theory. In Sections 6 and 15 we comment on this in more detail.

Finally, we mention that [33], [34], [35] and [36] are forerunners of the present work.

Part I
Information without Probability

1. The world and you

By Ω we denote the world, more precisely the actual world, perhaps one among several conceivable
worlds. Two fictive persons play a major role in our modelling, “Nature” and “Observer”. The interplay
between the two takes place in relation to studies of situations from the world. Nature is seen as
an expression of the world itself and reflects the rules of the world. Observer seeks knowledge about
situations studied. It may be helpful to think of Observer as “you”. Somewhat stereotypical, we take
Nature to be female, Observer male.

The knowledge sought by Observer aims at inference concerning particular situations under study. A
higher form of inference may also be possible if Observer does not know the rules of the world, in other
words, does not know which world he is placed in. Then, having a reservoir of conceivable worlds in
mind, and based on experience from the study of several situations, Observer may attempt to infer which
one is the actual world.

We think of Ω as limited in some sense, a partial world. This appears to be the most realistic. In
principle, one could consider all kinds of phenomena at the same time, say of a statistical, physical,
social, psychological or other nature. However, the rules of the world may vary from context to context
and – if you do not take these rules as absolutes – even from one Observer to another. A finer modelling
than here considered may bring the notion of context more prominently into the picture.

The notions introduced are left as loose indications. They will take more shape as the modelling
progresses. The terminology chosen here and later on is intended to provoke associations to common
day experiences of the cognitive process. In addition, the terminology is largely consistent with usage in
philosophy.

2. Truth and Belief

Nature, as an expression of the fixed rules of the world, does not have a mind. She is the holder of
truth. Observer seeks the truth but is relegated to belief. However, Observer possesses a conscious and
creative mind which can be exploited with the goal to obtain knowledge as effortlessly as possible.
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We introduce two non-empty sets, X , the state space, and Y , the belief reservoir. Elements of X ,
generically denoted by x, are truth instances or states of truth or just states, whereas elements of Y ,
generically denoted by y, are belief instances. Typically, in any situation, we imagine that Nature chooses
a state and that Observer chooses a belief instance. This leads to the introduction of certain games which
will be studied systematically at a later point, starting with Section 10.

We assume that Y ⊇ X . Therefore, in any situation, it is conceivable that Observer actually believes
what is true. Often, Y = X will hold. Then, whatever Observer believes, could be true.

Though there may be no such thing as absolute truth, it is tempting to imagine that there is and to
think of Natures choice as an expression of just that. We shall not attempt to model the mechanisms
behind Natures choice. Later on, we open up for the possibility that somehow Observer may influence
Natures choice. In any case, the interplay between Nature and Observer is a key to our modelling.

In any specific situation, Natures choice is not free within all of X but restricted to a non-empty
subset P of X , the preparation. This set depends on the particular situation studied. The idea is that
Observer, perhaps a physicist, can “prepare” a situation, thereby forcing Nature to restrict her choice of
state accordingly. For instance, by placing a gas in a heat bath, Nature is restricted to states which have
a mean energy consistent with the prescribed temperature.

A situation is normally characterized by specifying a preparation. However, further details, especially
regarding Observers behaviour may also be included in the modelling of “a situation”. A state x is
consistent – viz. consistent with the preparation P of the situation – if x ∈ P . Later on, we shall consider
preparation families which are sets, generically denoted by P, whoes members are preparations.

Faced with a specific situation with preparation P , Observer speculates about the state of truth chosen
by Nature. He may express his opinion by assigning a belief instance to the situation. If he insists on
choosing this instance from the preparationP , Observer will only believe what could be true. Sometimes,
Observer may prefer to assign a belief instance in Y \ P (or even in Y \ X) to the situation. Then this
instance cannot possibly be one chosen by Nature. Nevertheless, it may be an adequate choice if an
instance in P would contradict Observers subjective beliefs. Therefore, the chosen instance may be
the “closest” to the actual truth instance in some subjective sense. Anyhow, Observers choice of belief
instance is considered a subjective choice which takes available information into account such as general
insight and any prior knowledge. Qualitatively, these thoughts agree with Bayesian thinking, and as such
enjoy the merits, but are also subject to the standard criticism, which applies to this line of thought, cf.
[11] and [37].

Our modelling may involve a set of certain beliefs, a subset Ydet of Y . Beliefs from Ydet are chosen
by Observer if he is quite determined on what is going on – but, of course, Observer could be wrong. If
we do not find it appropriate to work with certain beliefs, we formally put Ydet = ∅.

3. A tendency to act, a wish to control

Two ways will lead us to new and important structural elements. These elements will be considered
identical for the present modelling. Finer modelling may later change that.

First, we point to the mantra that belief is a tendency to act. This is a rewording taken from Good [38]
who suggested this point of view as a possible interpretation of the notion of belief. In daily life, action
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appears more often than not to be a spontaneous reaction to situations man is faced with, rather than
a result of rational considerations or, the reaction depends on psychological factors or brain activity
largely outside conscious control. Here, we shall appeal to rational thinking based on quantitative
considerations. Precise details will have to wait until Section 6. Right now we introduce the basic
structural elements which will facillitate the further modelling. To do so, we shall work with a set Ŷ ,
the action space, and a map from Y into Ŷ , referred to as response. Elements of Ŷ are actions. We use
the notation y 7→ ŷ to indicate the action which is Observers response in situations where hes belief is
represented by the belief instance y.

Response need not be injective, thus it is in general not possible to infer Observers beliefs from hes
actions. Elements of Y with the same response are said to be response-equivalent, notationally written
y1 ∼ y2. Response need not either be surjective, though for most applications it will be so. Elements not
in the range are idle for the actual model under discussion but may become relevant if the setting is later
expanded.

In order to simplify the exposition we have taken response to be an ordinary map. However, for some
models, cf. Section 17, it would be appropriate to work with set-valued maps. This will enable Observer
to take situations into account where he considers several possible actions to be equally attractive.

Let us turn to another tendency of man, the wish to control. This makes us introduce a set W , the set
of controls. For the present modelling, we take W and Ŷ to be identical: W = Ŷ . The point of view is
that in order to exercise control, Observer has to act, typically by setting up appropriate experiments, and
in a rough mathematical model as here suggested we simply identify the two aspects. Later elaborations
may change that and lead to a clear distinction between action and the more passive concept of control.

The simplest models are obtained when response is an injection or even a bijection. And simplest
among these models are the cases when Y = Ŷ = W and response is the identity map. This corresponds
to a further identification of belief, action and control. Even then it makes a difference if you think about
elements as expressions of belief or as expressions of actions necessary to obtain control.

Sometimes, it is technically convenient to assume that W contains a special element, w∅, the empty
action. This reflects on situations where Observer sees no reason to take any action or to exercise any
control. If the modelling involves a non-empty set Ydet, we assume that w∅ ∈ W and that ŷ = w∅ for
every y ∈ Ydet.

Though many models do not need the introduction of Ŷ (and W ), the further development will
mainly refer to Ŷ -related concepts. Technically, this results in greater generality, as response need not be
injective. Belief-type concepts, often indicated by pointing to the “Y -domain” will primarily be derived
from action- or control-based concepts, often indicated by pointing to the “Ŷ -domain”. The qualifying
indication may be omitted if it is clear whether we work in the one domain or the other.

4. Atomic situations, Controlability and Visibility

The two closely connected relations to be introduced in this section constitute refinements which may
be disregarded at a first reading. This can be done by taking the relations to be the diffuse relations (in
notation below, X ⊗ Ŷ = X × Ŷ and X ⊗ Y = X × Y ).

Elements of Ŷ will below mainly be conceived as controls.
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Pairs of states and belief instances or of states and controls are key ingredients in situations from the
world. However, not all pairs will be allowed. Instead, we imagine that offhand, Observer has some
limited insight into Natures behaviour and therefore, Observer takes care not to associate “completely
stupid” belief instances or controls, as the case may be, with situations of interest.

We express these ideas in the Ŷ -domain by introducing a relation from X to Ŷ , called controlability
and denoted X ⊗ Ŷ . Thus X ⊗ Ŷ is a subset of the product set X × Ŷ . Elements of X ⊗ Ŷ are atomic
situations (in the Ŷ -domain). An atomic situation (x,w) is an adapted pair if w is adapted to x in the
sense that w = x̂. If (x,w) is an atomic situation, we write w � x and say that w controls x or that x
can be controled by w.

Let P be a preparation. We write w � P , and call w a control point (or just a control) of P , if w � x

for every x ∈ P . By [̂P ] we denote the set of all control points of P . We write [̂x] if P is the singleton
set {x}. For w ∈ Ŷ , ]w[ denotes the control region of w, the set of x ∈ X for which w � x. Clearly,
w ∈ [̂P ], w � P and P ⊆]w[ are equivalent statements. Sometimes we consider the restriction P ⊗ Ŷ
which consists of all atomic situations (x,w) with x ∈ P .

We assume that the following conditions hold:

∀x ∈ X : x̂ � x , (1)

∀w ∈ Ŷ : ]w[6= ∅ (2)

and, normally also that
∃y ∈ Y : ŷ � X. (3)

The first condition is essential and the second rather innocent. The third condition is introduced when
we want to ensure that X is not “too large”. Models where (3) does not hold are considered unrealistic,
beyond what man (Observer) can grasp. If response is surjective, it amounts to the condition [̂X] 6= ∅.

Corresponding to controlability, we consider the derived relation of visibility in the Y -domain,
denoted X ⊗ Y and given by

X ⊗ Y = {(x, y) ∈ X × Y |ŷ � x} . (4)

We use the same sign, �, for visibility as for controlability. The context will have to show if we work
in the Ŷ - or in the Y -domain. We find that y � x if and only if ŷ � x. If this condition holds, we say
that y covers x or that x is visible from y. Pairs in X ⊗ Y are atomic situations (in the Y -domain). An
atomic situation (x, y) is an adapted pair if (x, ŷ) is so in the Ŷ -domain, i.e. if y ∼ x. And (x, y) is a
perfect match if y = x. The two notions coincide if response is injective. An atomic situation (x, y) is a
situation of certainty if y ∈ Ydet.

By (1), x � x for all x ∈ X , thus X ⊗ Y contains the diagonal X ×X . The outlook (or view) from
y ∈ Y is the set ]y[= {x|y � x}. Clearly, ]y[=]ŷ[. By definition (4) and by (2), this set is non-empty
and, when (3) holds, for at least one belief instance, the outlook is all of X .

For a preparation P we write y � P , and call y a view point of P , if y � x for every x ∈ P . The set
of all view points of P is denoted [P ]. We write [x] if P is the singleton P = {x}. By ctr(P), the centre
of P , we denote the set of view points in the preparation, i.e. ctr(P) = P ∩[P ]. This set may be empty.

Restrictions P ⊗ Y = {(x, y) ∈ X ⊗ Y |x ∈ P} are at times of relevance.
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In any situation, Observer should ensure that from his chosen belief instance, every state which could
conceivably be chosen by Nature is visible. Therefore, in a situation where the preparation P is known
to Observer, Observer should only consider belief instances in [P ]. Indeed, if Observer chooses a belief
instance y ∈ Y \ [P ], there is a risk that Natures choice will be a truth instance which is not visible from
y – and, guided as we shall be, by the cautious principle that “what can go wrong does go wrong” – this
will not be acceptable to Observer.

In the sequal we shall often consider bivariate functions, generically denoted by either f̂ (Ŷ -domain)
or by f (Y -domain). The f̂ -type functions are defined either on X ⊗ Ŷ or on some subset of X ⊗ Ŷ
of the form P × [̂P ] for some preparation P . The range of f̂ may be arbitrary, a subset of the extended
real line or some abstract set. Given f̂ , it is understood that f denotes the derived function defined by
f(x, y) = f̂(x, ŷ) on pairs (x, y) for which (x, ŷ) is in the domain of definition of f̂ . Clearly, the domain
of definition of the derived function is either X ⊗ Y or the set P × [P ] if f̂ is defined on P × [̂P ].

Every derived function is response-only dependent, i.e. the value does not change if the belief instance
entering in the definition is changed to an response-equivalent one. If response is a surjection, there is a
natural one-to-one relation between Ŷ -type functions and response-only dependent Y -type functions.

Consider an f -type function defined on all of X ⊗ Y . For y ∈ Y , f y denotes the marginal function
given y, defined on ]y[ by f y(x) = f(x, y). Occasionally, we also need the marginal function given
x ∈ X . Notation and defining relation is fx(y) = f(x, y) for y ∈ [x]. We write f y <∞ on P to express,
firstly, that y � P so that f y is well defined on all of P and, secondly, that this marginal function is finite
on P . We write f y <∞ if f y <∞ on X .

5. Knowledge, Perception and Interaction

Observer strives for knowledge, conceived as the synthesis of extensive experience. Referring to
probabilistic thinking, we could point to situations where accidental experimental data are smoothed out
over time as you enter the regime of the law of large numbers. However, Observers endeavours may
result in less definitive insight, a more immediate reaction which we refer to as perception. It reflects
how Observer perceives situations from the world or, with a different focus, how situations from the
world are presented to Observer.

In the same way as we have introduced truth- and belief instances, we shall also consider knowledge
instances, also referred to as perceptions. Typically, they are denoted by z and taken from a set denoted
Z, the knowledge base (or perception base).

A central and simplifying assumption for our modelling is that the rules of the world Ω contain a
special function, Π̂ which maps X ⊗ Ŷ into Z, generically, z = Π̂(x,w). The derived function, Π, then
maps X ⊗ Y into Z. Both functions are referred to as the interactor. The context will show which one
we have in mind, Π̂ or Π.

Thus knowledge can be derived deterministically from truth and belief alone, and as far as belief is
concerned, we only have to know the associated response. In terms of perception, Observers perception
z of an atomic situation (x, y) is given by the formula z = Π(x, y).

In the present study, we consider the world as characterized by the associated interactor and we may
thus talk about the world with interactor Π, Ω = ΩΠ. The rules of the world may contain other elements
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than the interactor, but such further elements are not specified in the present study. Other elements which
could be considered in future developments include context, noise from the environment, and dynamics.
Such features can to some extent be expressed by defining X, Y and Z appropriately and by introducing
suitable interpretations.

In case response is a bijection and Z contains X as well as Y we consider two special conceivable
worlds by introducing the interactors Π1 and Π0 defined by Π1(x, y) = x, respectively Π0(x, y) = y.
The associated worlds are Ω1 = ΩΠ1 and Ω0 = ΩΠ0 . In Ω1, “what you see is what is true”, whereas
in Ω0, “you only see what you believe”. The world Ω1 is the classical world where, optimisticly, truth
can be learned, whereas, in Ω0, you cannot learn anything about truth. We refer to Ω0 as a black hole.
It is a narcisistic world, a world of extreme skepticism, only reflecting Observers beliefs and bearing no
trace of Nature. If Z is provided with some linear structure, we can introduce a parameter q and consider
further interactors Πq by putting Πq(x, y) = qx+ (1− q)y. Worlds associated with these interactors are
denoted Ωq.

The simplest world to grasp is the classical world, but also the worlds Ωq and even a black hole contain
elements which are familiar to us from daily experiences, especially in relation to certain psychological
phenomena. In this connection we point to placebo effects, cf. Benedetti [18], and to visual attention,
cf. Bundesen and Habekost [17]. The relevance of our modelling in relation to these phenomena is,
presently, purely qualitative.

6. Effort and Description

We turn to the introduction of the key quantitative tool we shall work with. In so doing, we will be
guided by the view that perception requires effort. Expressed differently, knowledge is obtained at a
cost. Since, according to the previous section, knowledge can be derived from truth and action, effort
can be modelled by a bivariate function defined on X ⊗ Ŷ , the effort function. The rules of the world
Ω may not point directly to an effort function which Observer can favourably work with. Or there may
be several sensible functions to choose from. The actual selection is considered a task left to Observers
ingenuity.

As a further speculation, we imagine that effort is derived from description. Description is intended
to aid Observer in his encounters with situations from the world. Logically, description comes before
effort. Effort arises when specific ideas about description are developed into a method of description.
Such methods we may think of as synonymous with experiments. The implementation of a method
of description or the performance of the corresponding experiment involves a cost which is specified
quantitatively by the effort function.

In order to develop these ideas further, it appears desirable to study more closely the nature of
description. We shall not enter into that here, only remark that it seems that description is essentially
quantitative. Fact is that though we often think of description in loose qualitative terms, a closer view will
show that in order to develop precise concepts which can be communicated among humans, quantitative
elements will inevitably be involved. This may be based on a finite set of descriptors, real-valued
functions defined on X .
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Imagine now that somehow Observer has chosen all elements needed – response, actions, experiments
– and settled for an effort function, Φ̂. Let us agree on what a “good” effort function should mean.
Generally speaking, Observer should of course aim at experiments with a low associated effort. To reach
more detailed criteria of “goodness” , consider a fixed truth instance x and the various possible actions
w, in principle free to be any action which controls x. It appears desirable that the action adapted to x is
the one preferred by Observer. Thus effort should be minimal in this case, i.e. Φ̂(x,w) ≥ Φ̂(x, x̂) should
hold. Further, if the inequality is sharp except for the adapted action, this will have a training effect and
hopefully over time encourage Observer to choose the optimal action, x̂.

Formally, we define a Ŷ -effort function as a function Φ̂ on X ⊗ Ŷ with values in ] −∞,+∞] such
that

Φ̂(x,w) ≥ Φ̂(x, x̂) for all (x,w) ∈ X ⊗ Ŷ . (5)

If w∅ ∈ Ŷ , we also require that Φ̂(x,w∅) = 0 when w∅ � x. The effort function is proper, if equality
holds in (5) only if either Φ̂(x, x̂) =∞ or else w is adapted to x, w = x̂.

Note that effort may be negative (but not −∞). This flexibility will later be convenient as it will
allow us to pass freely between notions of effort and notions of utility by a simple change of sign. But
normally, effort functions will be non-negative.

We define a Y -effort function as a function Φ : X ⊗ Y 7→]−∞,∞] such that

Φ(x, y) ≥ Φ(x, x) for all (x, y) ∈ X ⊗ Y . (6)

If Ydet 6= ∅, we require that Φ vanishes for any atomic situation of certainty. The effort function is proper
if equality holds in (6) only if either Φ(x, x) =∞ or else there is a perfect match, y = x. These notions
are defined directly with reference to the Y -domain. However, it lies nearby also to consider functions
which can be derived from Ŷ -effort functions Φ̂. They are derived effort functions and, in case Φ̂ is
proper, proper derived effort functions. The two strategies for definitions, intrinsic and via derivation,
give somewhat different concepts. In case response is injective, the resulting notions are equivalent. In
general, derived effort functions are response-only dependent and, in the other direction, for a proper
derived effort function, you can only conclude response-equivalence, y ∼ x, if Φ(x, y) = Φ(x, x) and
Φ(x, x) <∞. We shall talk about effort functions without a qualifying prefix, Ŷ or Y , if it is clear from
the context what we have in mind. We shall always point out if we have derived functions in mind.

The effort functions introduced determine net effort. However, the implementation of the method of
description – which we imagine lies behind – may, in addition to a specific cost, entail a certain overhead
and, occasionally, it is appropriate to include this overhead in the effort. We refer to Section 21, (109)
for an important instance of theis.

Two effort functions Φ̂1 and Φ̂2, or Φ1 and Φ2, which only differ from each other by a positive scalar
factor are scalarly equivalent. There may be many non-scalarly equivalent effort functions for Observer
to choose from. The choice among scalarly equivalent ones amounts to a determination of a unit of effort.
If an effort function is proper, so is every scalarly equivalent one.

We imagine that the choice of effort function involves considerations related to knowledge and to
the rules of the world. However, once Φ̂, hence also Φ are fixed, these other elements are only present
indirectly. They will not appear for the remainder of Part I. The ideas of Section 5 have thus mainly
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served as motivation for the further abstract development. The ideas will be taken up again when in
Section 21 we turn to a study of probabilistic models.

The author was led to consider proper effort functions in order to illuminate certain aspects of
statistical physics, cf. [33], [36]. However, the ideas have been around for quite some time, especially
among statisticians. For them it has been more natural to work with functions taken with the reverse sign
by looking at “score” rather than effort. Our notion of proper effort functions, when specialized to a
probabilistic setting, matches the notion of proper scoring rules as you find it in the statistical literature.
As to the literature, Csiszár [39] comments on the early sources, including Brier [40], a forerunner of
research which followed, and Good [38], Savage [41] (see e.g. Section 9.4) and Fischer [42]. See also
the reference work [43] by Gneiting and Raftery. For research of Dawid and collaborators – much in line
with what you find here and in [25] – see [44], [45] and [46].

Regarding terminology we shall at times say that a Y -effort function satisfies the perfect match
principle if it is proper. Fact is that the word “proper” does not say that much. The word was chosen to
fit in with previous and current usage in the statistical literature just pointed to.

7. Basic Concepts of Information, Information Triples

Information in any particular situation concerns truth. If P is a preparation, “x ∈ P” signifies that the
true state is to be found among the states in P . If P is a singleton, we talk about full information and use
the notation “x” rather than “x ∈ {x}”; otherwise, we talk about partial information.

We shall not be concerned with how information can be obtained – if at all. Perhaps, Observer only
speculates about the potential possibility of acquiring information, either through his own activity or
otherwise, e.g. via the involvement of an aid or a third party, an informer3.

We shall connect information with quantitative considerations and take as base a proper effort function
Φ̂. Following Shannon we disregard semantic content. Instead, we focus on the possibility for Observer
to benefit from information by a saving of effort. Accordingly, we view Φ̂(x,w) as the information
content of “x” in an atomic situation with x as truth instance and w as action – indeed, if you are told
that x is the true state, you need not allocate the effort Φ̂(x,w) to the situation which you were otherwise
prepared to do. The somewhat intangible and elusive concept of “information” is thus measured by the
more concrete and physical notion of effort. The unit of information is, therefore, the same as the unit
used for effort.

There is a huge literature elucidating what information really “is”. Suffice it here to refer to [20] and,
as an example of a discussion more closely targeted on our main themes, we refer to Caticha [47] who
maintains that “Just as a force is defined as that which induces a change in motion, so information is that
which induces a change in beliefs”. One may just as well, we find, talk about a change of action.

The undisputed central concept of the theory developed by Shannon is that of entropy. In our general
abstract setting, entropy also makes sense. One possible interpretation is as guaranteed saving of effort.
With effort given by Φ̂ we are led to define, for any state x, the entropy of x – understood as the entropy

3 For example, at the airport, you may speculate about the departure time of your flight when you hear the announcement
that “the flight to Copenhagen departs at 4 p.m.”
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associated with the information “x” – as the minimum over w of Φ̂(x,w). By the defining property (5),
this equals Φ̂(x, x̂). Denoting entropy by H, we therefore have

H(x) = Φ̂(x, x̂) . (7)

The motivating consideration makes most sense if, one way or another, Observer eventually obtains
full information about the true state. However, if instead you view entropy as necessary allocation of
effort understood as the effort you have to reserve in order to have any chance to obtain full information,
it does not appear important actually to obtain that information.4 As yet a third route to entropy we
suggest to view it as a quantitative expression of the complexity of the various states. To evaluate this,
Observer may suggest to use minimal accepted effort, the effort he is willing to allocate to the various
states.

Entropy may also be obtained with reference only to the Y -domain. Indeed, with Φ the derived effort
function, for each state x,

H(x) = Φ(x, x) .

Whichever route to entropy you take – including the game theoretical route of Section 10 – subjective
elements will be involved, typically through Observers choice of description and associated experiments.
If, modulo scalar equivalence, the actual world only allows one proper effort function, entropy, and
notions related to entropy, are of a more objective nature. We shall later see examples of such worlds but
even then, subjective elements may enter through inference by Observer regarding which world is the
actual one.

Entropy as a notion derived from effort should not be considered in isolation. Apart from effort itself,
we turn to the introduction of two other basic concepts which make sense in our abstract setting, viz.
redundancy for the Ŷ -domain and its counterpart, divergence, for the Y -domain.

We start with redundancy and consider an atomic situation (x,w) ∈ X ⊗ Ŷ . Then redundancy D̂

between x and w is measured by the difference between actual and minimal effort, i.e., ideally, as

D̂(x,w) = Φ̂(x,w)− H(x) . (8)

Assume, for a moment, that H is finite-valued. Then redundancy in (8) is well defined and, by a trivial
rewriting of this equation, the three basic quantities, Φ̂, H and D̂ are connected by the linking identity

Φ̂(x,w) = H(x) + D̂(x,w) , (9)

valid for any atomic situation (x,w) ∈ X ⊗ Ŷ . Furthermore, redundancy is non-negative and only
vanishes under perfect adaptation: D̂(x,w) ≥ 0 and D̂(x,w) = 0 ⇔ w = x̂. These facts we refer to as
the fundamental inequality of abstract information theory (Ŷ -domain).

The linking identity is a technically important way of rewriting (8), partly as it allows us to circumvent
the difficulty regarding possible indeterminacy of redundancy and partly as it opens up for an independent
axiomatic treatment of concepts of information. What we shall do, rather than assuming that entropy is

4 Instead of “entropy” one could have suggested a more neutral terminology such as “necessity”. This may be considered
less awquard when we consider other applications of the abstract theory than classical Shannon theory.
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always finite, is to assume that the function D̂ can be defined on all of X⊗ Ŷ as a non-negative extended
real-valued function in such a way that the linking identity as well as the fundamental inequality hold.
We express this assumption by saying that (Φ̂,H, D̂) is an information triple, for clarity an information
triple over X ⊗ Ŷ . Thus, the main conditions imposed are, that Φ̂ = H +D̂ 5 and that D̂(x,w) ≥ 0

with equality if and only if w = x̂. We emphasize that the extended real-valued functions Φ̂ and H

are not allowed to assume the value −∞. Note also that the effort function of an information triple is
automatically proper.

Normally, there is a natural way to extend the redundancy function as defined by (8) when H(x) <

∞, so that an information triple emerges. In this way the problem of indeterminacy of redundancy
disappears, and the slightly strengthened assumption that redundancy can be defined “appropriately” on
all of X ⊗ Ŷ will, as it turns out, present no difficulty in concrete cases of interest.

Information triples occur frequently in the sequal. Sometimes one does not need a full triple (Φ̂,H, D̂)

but only the redundancy function. Formally, a function D̂ : X ⊗ Ŷ 7→ [0,∞] is a general redundancy
function if it satisfies the fundamental inequality with w = x̂ as the condition for vanishing redundancy.
From such a function you may obtain a full information triple by adding any function on X with values
in ]−∞,∞], taking this function as the entropy function.

We turn to the definition of Y -type information triples. They are triples (Φ,H,D) with Φ : X ⊗ Y 7→
]−∞,∞], H : X 7→]−∞,∞] and D : X ⊗ Y 7→ [0,∞], such that the linking identity

Φ(x, y) = H(x) + D(x, y) (10)

holds for all (x, y) ∈ X ⊗ Y and such that the fundamental inequality holds for D, i.e., for all (x, y) ∈
X ⊗ Y ,

D(x, y) ≥ 0 (11)

with equality if and only if there is a perfect match, y = x. The function Φ is the effort function of the
triple, H the entropy function and D the divergence function. Automatically, Φ is proper.

A triple (Φ,H,D) is a derived information triple if there exists Φ̂ and D̂ such that (Φ̂,H, D̂) is a Ŷ -
information triple and Φ and D are the functions derived from, respectively, Φ̂ and D̂. If response is
injective, the two types of information triples for the Y -domain are equivalent. In general, D, hence
also Φ, of a derived triple are response-only dependent and the condition for equality in the fundamental
inequality is one of response-equivalence (y ∼ x) rather than one of equality.

Just as for the Ŷ -triples, one may at times take divergence as the basic concept. A general divergence
function D on X ⊗Y – or just a divergence function – as a function D : X ⊗Y 7→ [0,∞] which satisfies
the fundamental inequality with y = x as the condition for equality in (11). And a general derived
divergence function is one which can be derived from a general redundancy function.

Redundancy and divergence are emphasized in the following definition: Two information triples are
equivalent if they have the same redundancy (applies to the Ŷ -domain) or the same divergence (applies to
the Y -domain)6. Despite the chosen terminology, equivalent triples may have quite different properties

5 correctly: Φ̂ = H ◦ p̂r + D̂ with p̂r the projection from X ⊗ Ŷ to X .
6 a stronger form of equivalence requires in addition that the two entropy functions simultaneously assume the value∞
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and one may search for an equivalent triple with good properties. Note that among triples equivalent to a
given triple, say (Φ,H,D), we always have the special triple (D, 0,D). This triple we may often want to
modify. One way to do that is via a process of randomization. This relates to results of Kuhn-Tucker type
with concrete applications in information theory (channel capacity) and in location theory (Sylvesters
problem). Though quite important, we shall not include that in the present write-up.

Instead of taking triples as introduced above as the basis, it is sometimes more natural to start out with
a triple of the “opposite nature”. This refers to situations where it is appropriate to focus on a positively
oriented quantity such as utility or pay-off rather than on effort. This is often the case for studies of
economy, meteorology and statistics where one meets the notion of “score” as previously indicated.
In order to distinguish the two types of triples from eachother, we may refer to them as effort-based,
respectively utility-based information triples. To be precise, let us focus on the Y -domain and define
a utility-based information triple as a triple (U,M,D) for which (−U,−M,D) is an effort-based
information triple. For a derived utility-based information triple we require that (−U,−M,D) is a
derived effort-based information triple. The function U = U(x, y) defined on X ⊗ Y is utility, the
function M = M(x) defined on X max-utility, and D = D(x, y) defined on X ⊗ Y is, as before,
divergence. The linking identity for a utility-based triple takes the form U = M−D (U = M ◦ pr−D)
which can never result in the indeterminate form∞−∞ since, by definition, U, hence also M, can never
assume the value +∞.

For the Ŷ -domain, (Û,M, D̂) is a utility-based information triple if (−Û,−M̂, D̂) is an effort-based
information triple.

In view of the main examples we have in mind, we have found it most illuminating to take effort rather
than utility as the basic concept to work with, and hence to develop the main results for effort-based
quantities. Anyhow, even if you are primarily interested in considerations based on effort, you are easily
led to consider also utility-based quantities as we shall see in Section 8.

The concept of information triples is, except for minor technical details, equivalent to the concept
of proper effort functions. We find that apart from a slight technical advantage, the triples constitute a
preferable base for information theoretical investigations as the three truly basic notions of information
are all emphasized and their basic interrelationship – the linking identity – focused on. Historically, the
notions arose for classical probabilistic information theoretical models, cf. Section 19. Effort functions
go back to Kerridge [48] who coined the term inaccuracy, entropy to Shannon [1] and divergence to
Kullback [49]. The term “redundancy” which we have used for another side of divergence, corresponds
to one usage in information theory, though the term is there used in several other ways which are not
expressed in our abstract setting.

Our way to information triples was through effort and one may ask why we did not go directly to the
triples. For one thing, triples lead to a smooth axiomatic theory, for the beginnings of which see Topsøe
[50]. However, though axiomatization can be technically attractive, we find that a focus on interpretation
as in our more philosophical and speculative approach, is of primary importance and contributes best to
an understanding of central concepts of information. Axiomatics only comes in after basic interpretations
are in place.
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8. Relativization, Updating

In this section we shall work entirely in the Y -domain. We start by considering an effort-based
information triple (Φ,H,D) on X ⊗ Y . Often, it is natural to measure effort relative to some standard
performance rather than by Φ itself. An especially important instance of this kind of relativization
concerns situations where Observer originally fixed a prior, say y0 ∈ Y , but now wants to update
his belief by replacing y0 with a posterior y. Perhaps, Observer – through his own actions or via
an informer – has obtained the information “x ∈ P” for some preparation P . If y0 /∈ P , Observer
may want to replace y0 by a posterior y ∈ P . The associated updating gain is, in a first attempt of a
reasonable definition, given by the quantity U|y0 obtained by comparing performance under the posterior
with performance under the prior:

U|y0(x, y) = Φ(x, y0)− Φ(x, y) . (12)

A difficulty with (12) concerns the possible indeterminate form∞−∞. If we ignore this difficulty
and apply the linking identity (10) to both terms in (12), entropy H(x) cancels out and we find the
expression

U|y0(x, y) = D(x, y0)−D(x, y) , (13)

which is less likely to be indeterminate. When not of the indeterminate form ∞ − ∞, we therefore
agree to use (13) as the formal definition of updating gain, more precisely of relative updating gain with
y0 as prior. For the present study, we shall only work with updating gain when Dy0 is finite on some
preparation P under consideration. Assuming that this is the case, we realize that

(U|y0 ,D
y0 ,D) (14)

is a utility-based information triple on P ⊗ Y . Max-utility is identified as the marginal function Dy0 on
P and divergence is the original divergence function restricted to P ⊗ Y .

It is important to note that the triples which occur in this way by varying y0 and P do not require
the full effort function Φ for their definition. It suffices to start out with a general divergence function
on X ⊗ Y in order for the construction to make sense. When the construction is based on a general
divergence function D, we refer to (14) as the updating triple generated by D and with y0 as prior. For
these updating triples, we take y0 as the only certain belief instance. The triples just introduced can
be identified in a simple manner among all utility-based information triples. We formulate the result
corresponding to the full preparation P = X:

Proposition 1. Let (U,M,D) be a utility-based information triple on X ⊗ Y and assume that there
exists a certain belief instance in X from which all of X is visible. Then there can only be one such
belief instance, say y0, and in this case Dy0 <∞ and (U,M,D) = (U|y0 ,D

y0 ,D) on X ⊗ Y .

Proof. Assume that y0 ∈ X is a certain belief instance and that ]y0[= X . Then, for every x ∈ X ,
(x, y0) ∈ X ⊗ Y and 0 = U(x, y0) = M(x) − D(x, y0), hence Dy0 < ∞ and M = Dy0 . If y1 ∈ X has
similar properties, also M = Dy1 holds. In particular, as y0 ∈ X , Dy0(y0) = Dy1(y0), i.e. 0 = D(y0, y1),
hence y1 = y0. The result follows.
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Though rather trivial, the observations regarding updating gain are important as they imply that results
in that setting may be derived from results based on effort. To emphasize this, we introduce, based only
on a general divergence function D, the effort-based information triple associated with (14) as the triple

(Φ|y0 ,−Dy0 ,D) (15)

with Φ|y0 , given by
Φ|y0(x, y) = D(x, y)−D(x, y0) . (16)

This is a perfectly feasible effort-based triple on P ⊗ Y whenever Dy0 is finite on P . As with the
utility-based triple (14) we take y0 as the only certain belief instance.

In Sections 11 and 14 we shall derive results about minimum divergence (information projections)
from results about maximum entropy by exploiting the simple facts here uncovered.

As we have seen, natural information triples may be derived from a general divergence function by a
simple process of relativization. While we are at it, we note that in case Y = X , also reverse divergence
(x, y) 7→ D(y, x) defines a genuine divergence function on X ⊗ Y 7. Therefore, if Dy0 <∞ and we put
Φr
|y0(x, y) = D(y, x)−D(y0, x), (

Φr
|y0(x, y),−D(y0, x),D(y, x)

)
(17)

defines a genuine information triple (when restricting the variables x and y appropriately). These triples
are, however, not found to be that significant.

9. Feasible Preparations

We claim that description is the key to what can be known, a key to the “knowable”. Not every
possible information “x ∈ P” for any odd preparation P can be expected to reflect a realistic situation.
The questions we ask are “what can Observer know?” or “what kind of information can Observer hope
to obtain?”. We thus want to investigate “limits to knowledge” and “limits to information”. In order to
provide an answer, we shall identify classes of preparations which represent feasible information. These
classes will be defined with reference to an effort function Φ̂. For this section, Φ̂ need not be proper.

Given w ∈ Ŷ and a level h <∞, we define the level set Pw(h) and the sublevel set Pw(h↓) by

Pw(h) = {Φ̂w = h} ; Pw(h↓) = {Φ̂w ≤ h} , (18)

i.e. as the set of states which are controled by w, either at the level h or at the maximum level h. These
sets are genuine preparations whenever they are non-empty. Whenw is the response of a state x ∈ X , the
sublevel set is non-empty whenever h ≥ H(x). As level- and sublevel sets for other functions will appear
later on, cf. Section 12, we may for clarity refer to Pw(h) and to Pw(h↓) as, respectively, Φ̂w-level sets
and Φ̂w-sublevel sets.

The preparations in (18) are primitive strict, respectively primitive slack preparations. A general
strict, respectively a general slack preparation is a finite non-empty intersection of primitive strict,

7 in contrast, reverse description effort need not define a genuine effort function.
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respectively primitive slack preparations. The genus of these preparations is the smallest number of
primitive preparations (either strict or slack as the case may be) which can enter into the definition just
given. Thus primitive preparations are of genus 1.

If w = (w1, · · · , wn) are elements of Ŷ and h = (h1, · · · , hn) are real numbers, the sets

Pw(h) =
⋂
i≤n
Pwi(hi) and Pw(h↓) =

⋂
i≤n
Pwi(h↓i ) (19)

define strict, respectively slack preparations whenever they are non-empty. When using these
expressions, it is natural to assume that n is the genus of the preparations considered. If Pw(h) 6= ∅ this
set is the corona of Pw(h↓).

The preparations introduced are those we consider to be feasible and we formally refer to them as the
feasible preparations. They provide the answer to the question about what can be known. They are the
key ingredients in situations which Observer can be faced with. In any such situation a main problem
concerns inference, an issue we shall take up in the next section.

Of special interest are families of feasible preparations. Given w = (w1, · · · , wn), we denote by Pw,
respectively Pw↓, the families which consist of all preparations Pw(h), respectively Pw(h↓), which can
be obtained by varying h.

Clearly, the feasible preparations can also be expressed by reference to the derived effort function Φ

rather than Φ̂. We use the notation Py(h) and Py(h↓) for, respectively, the Φy-level set {Φy = h} and
the Φy-sublevel set {Φy ≤ h}. If ŷ = w, Py(h) = Pw(h) and Py(h↓) = Pw(h↓)8. For finite sequences
y = (y1, · · · , yn) of elements of Y and h = (h1, · · · , hn) of real numbers, the sets Py(h) and Py(h↓)

are defined in the obvious manner as are the families of preparations Py, respectively Py↓.
From a formal point of view, it does not matter if we use Pw-type sets or Py-type sets as the basis

for the definition of feasible preparations. However, entering into more speculative interpretations, the
Pw-type sets with w a control seem preferable. Individual controls w ∈ Ŷ or a collection of such
controls point to experiments which Observer may perform. An experimental setup identifies a certain
preparation, the preparation of states consistent with the setup, and thus determines what is known to
Observer. Determining all preparations which can arise in this way, we are led to the class of feasible
preparations as defined above.

As to the nature of the various controls, we imagine that they are derived from description. To control
a situation, you must be able to describe it, and with a description you have the key to control. We might
imagine that, corresponding to a control w, Observer can realize a certain experimental setup consisting
of various parts – measuring instruments and the like. In particular, there is a special handle which is
used to fix the level of effort. If the level, perhaps best thought of as a kind of temperature, is fixed to
be h, the states available to Nature are those in the appropriate feasible preparation. Several experiments
can be carried out with the same equipment by adjusting the setting of the handle. If Observer wants
to constrain the states by other means, he can add equipment corresponding to another control w′ and
choose a level h′ for the experimental setup constructed based on w′. The result is a restriction of the
available states to the intersection of the two preparations involved.

8 note that for an expression such as Pq(h), the nature of q determines if this is a Φ̂- or a Φ-level set.
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If the preparation is Pw(h↓) and the actual state is not inside this preparation, you may imagine that
the result is overheating and breakdown of the experimental setup! Thus you must keep the state inside
the preparation and this may well be what requires an effort as specified by Φ̂.

10. Inference via Games

For this section, (Φ̂,H, D̂) is an effort-based information triple on X ⊗ Ŷ and (Φ,H,D) the derived
triple on X ⊗ Y .

Consider partial information “x ∈ P”. In practice, P will be a feasible preparation, but we need not
assume so for this section.

The process of inference concerns the identification of “sensible” states in P – ideally only one such
state, the inferred state. In many cases, this can be achieved by game theoretical methods involving
a two-person zero-sum game. As it turns out, this will result in “double inference” where also either
control instances or belief instances will be identified – ideally, only one such instance, the inferred
control or the inferred belief instance as the case may be.

An inferred state, say x∗, brings Observer as close as possible to the truth in a way specified in some
sense by the method applied. On the other hand, focusing on control, an inferred control instance w∗ is
more of an instruction to Observer on how to act regarding the setup of experiments and performance
of subsequent observations. You may say that actions by Observer as dictated by the control w∗ is what
is needed for Observer in order to justify the inference x∗ about truth. In short, double inference gives
Observer information both about what can be inferred about truth and how.

Given P , we shall study two closely related two-person zero-sum games, γ̂(P) and the derived
game γ(P). If need be, we may write γ̂(P |Φ̂) and γ(P |Φ). The games have Nature and Observer
as players and Φ̂, respectively Φ as objective function. Nature is understood to be a maximizer, Observer
a minimizer. For both games, strategies involve the choice by Nature of a state in P . Observer strategies
for γ̂(P), respectively γ(P) are controls from which every state in P can be controled, respectively
belief instances from which every state in P is visible. Pairs of permissable strategies for the two games
are either pairs (x,w) ∈ X ⊗ Ŷ with x ∈ P , w � P or pairs (x, y) ∈ X ⊗ Y with x ∈ P , y � P .
In consistency with the discussion in Section 2, an Observer strategy may be thought of as a strategy
which is not “completely stupid” whatever the strategy of Nature as long as that strategy respects the
requirement x ∈ P . The choice of strategy for Observer may be a real choice, whereas, for Nature, it
may be more appropriate to have a fictive choice in mind, reflecting Observers thoughts about what the
truth could be.

Following standard philosophy of game theory, Observer should always be prepared for a choice by
Nature which is least favourable for him. One can argue that in our setting anything else would mean
that Observer would not have used all available information. The line of thought goes well with Jaynes
thinking as collected in [10], though there you find no reference to game theory.
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In order for our exposition to be self-contained and also because our games are slightly at variance
with what is normally considered 9, we shall here give full details regarding definitions and proofs. As a
general reference to game theory we point to [31].

Let us introduce basic notions for the γ̂-game and then only comment briefly about the corresponding
notions for the γ-game.

The two values of γ̂(P) are, for Nature,

sup
x∈P

inf
w�x

Φ̂(x,w) (20)

and, for Observer,
inf
w�P

sup
x∈P

Φ̂(x,w) . (21)

Note the slight deviation from usual practice in that w in the infimum in (20) varies over [̂x] and not
just over [̂P ] or some other set independent of x. Philosophically, one may argue that Nature does not
know of the restriction to P – this is something Observer has arranged – and hence cannot know of any
restriction besides the natural one w � x. As the infimum in (20) is nothing but the entropy H(x), the
value for Nature, denoted Hmax(P), is the maximum entropy value

Hmax(P) = sup
x∈P

H(x) , (22)

also referred to as the MaxEnt-value.
Problems on the determination of this value and associated strategies reaching the value (if any) are

maximum entropy problems, for short MaxEnt-problems. The archetypical concrete problems of this
nature are discussed in Section 19.

As to the value for Observer, we identify the supremum in (21) with the risk associated with the
strategy w and denote it by R̂i(w| P):

R̂i(w| P) = sup
x∈P

Φ̂(x,w) . (23)

The value for Observer then is the minimal risk of the game, also referred to as the MinRisk-value:

R̂imin(P) = inf
w�P

R̂i(w| P) . (24)

An optimal strategy for Nature is a strategy x∗ ∈ P with H(x∗) = Hmax(P) and an optimal strategy
for Observer is a strategy w∗ � P with R̂i(w∗| P) = R̂imin(P).

The reader will easily verify the general validity of the minimax inequality:

Hmax(P) ≤ R̂imin(P) . (25)

If this inequality holds with equality and defines a finite quantity, the game is said to be in game
theoretical equilibrium, or just in equilibrium, and the common value of Hmax(P) and R̂imin(P) is
the value of the game.

9 due to assumptions of properness of the effort functions considered and due to the refinement introduced regarding the
relations between control, visibility and response
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We need one more notion of equilibrium which we associate with the name of Nash10. A pair of
permissable strategies (x∗, w∗) is a Nash equilibrium pair for γ̂(P) if, with these strategies, none of the
players have an incentive to change strategy – provided the opponent does not do so either. This means,
for Nature, that

∀x ∈ P : Φ̂(x,w∗) ≤ Φ̂(x∗, w∗) , (26)

and, for Observer, that
∀w � P : Φ̂(x∗, w) ≥ Φ̂(x∗, w∗) . (27)

The inequalities (26) and (27) constitute (a special case of) the celebrated saddle-value inequalities of
game theory. Note that, in our case, one of these inequalities, (27), is automatic if (x∗, w∗) is an adapted
pair. Clearly, since the pair should also be a pair of permissable strategies, this requires that x∗ ∈ ctr(P).

We find that the game γ̂(P) is the most natural to consider in view of the associated interpretations.
However, we shall also formulate results for γ(P). Thereby one avoids direct consideration of controls.
The values of γ(P) are supx∈P infy�x Φ(x, y) and infy�P supx∈P Φ(x, y) and notions of strategies and
optimal strategies are defined in an obvious manner. We use the notation Ri for risk in this game,
defined, for y � P , as Ri(y|P) = supx∈P Φ(x, y). Clearly, Ri(y|P) = R̂i(ŷ|P). Therefore, if y1 � P
and y2 � P are response-equivalent, the associated risks are the same. Further, the values of γ(P) agree
with those of γ̂(P), in particular Rimin(P) = R̂imin(P). We leave it to the reader to transform the notions
of equilibrium and the form of the saddle-value inequalities to the game γ(P).

Important results of game theory are non-constructive by nature and aim at securing equilibrium and
existence of optimal strategies for wide classes of games. For our setting, this will be taken up in Section
14. However, for the present section we shall focus on the possibility to identify optimal strategies. This
leads to problems which are easy to handle technically and yet, it may be argued that from an applied
point of view such results are the more impoertant ones.

In our first result, we point out an important property of the optimal strategies for the key case we
shall deal with, that of a game in equilibrium for which both players have optimal strategies.

Theorem 1. [Basics] The game γ̂(P) is in equilibrium and both players have optimal strategies, if and
only if these properties also hold for the game γ(P). Assume now that this is the case.

Then there is only one optimal strategy, say w∗, for Observer in γ̂(P) and all optimal strategies for
Nature in γ̂(P) are response-equivalent with w∗ as response and lie in the centre of P .

The optimal strategies for Nature in γ(P) are the same as the optimal strategies for Nature in γ̂(P)

and a belief instance y � P is an optimal strategy for Observer in γ(P) if and only if it has w∗ as
response.

If response is injective, all optimal strategies considered are unique and the two optimal strategies for
γ(P) coincide.

Proof. The first statement follows directly from the definitions involved. In order to prove the remaining
parts, we concentrate on the game γ̂(P) and assume that this game is in equilibrium and that optimal

10 It should, however, be said that for the relatively simple case here considered (two players, zero sum), the ideas we need
originated with von Neumann, see [51] and [52] and, for a historical study, Kjeldsen [53].
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strategies for both players exist. Let x∗, w∗ be any set of such optimal strategies. By the defining relations
(5) and (7), by the assumptions of equilibrium and optimality of x∗ and of w∗, and by the definition (23)
of risk, we find that

Φ̂(x∗, w∗) ≥ Φ̂(x∗, x̂∗) = H(x∗) = Hmax(P) = R̂imin(P) = R̂i(w∗| P) ≥ Φ(x∗, w∗) , (28)

hence Φ̂(x∗, w∗) = H(x∗) and, since Φ̂ is proper and since H(x∗) = Hmax(P) < ∞, it follows that
w∗ = x̂∗. Then x̂∗ = w∗ � P and, as x̂∗ � P is equivalent with x∗ � P , we conclude that x∗ ∈ ctr(P).

Since x∗ above was an arbitrary optimal strategy for Nature and w∗ an arbitrary optimal strategy for
Observer, we conclude from w∗ = x̂∗ that the optimal Observer strategy is unique and that all optimal
strategies for Nature are response-equivalent, lie in ctr(P) and has the optimal Observer strategy as
response.

We leave it to the reader to establish the results for γ(P), say by noting that y � P is equivalent with
ŷ � P and that Ri(y|P) = R̂i(ŷ|P) and by using the first facts established.

Assume now that response is injective. Then uniqueness of optimal strategies, say of (x∗, w∗) for
γ̂(P) and of (x∗, y∗) for γ(P) follows readily and the identity of x∗ and y∗ follows as these belief
instances are response-equivalent.

Warning: It is not true that all Nature strategies with the optimal Observer strategy as response have to
be optimal. Simple examples, say with “collapse of response”, i.e. with Ŷ a singleton, will demonstrate
that.

When the games are in equilibrium and optimal strategies exist, we refer to any optimal strategy
for Nature as a a bi-optimal strategy. The bi-optimality refers to the fact that also Observer-optimality
is secured. Indeed, x̂∗ is optimal for Observer in γ̂(P) and any y∗ � P which is equivalent to x∗

(including x∗ itself) is optimal for Observer in γ(P). If response is injective, there is only one such state,
the bi-optimal state.

Whereas it may be difficult to find optimal strategies, it is often easy to check if given candidates are
in fact optimal.

Theorem 2. [Identification] Let (x∗, w∗) be permissable strategies for γ̂(P) with x∗ ∈ ctr(P) and
H(x∗) <∞.

Then a necessary and sufficient condition that γ̂(P) is in equilibrium with (x∗, w∗) as optimal
strategies is that (x∗, w∗) is a Nash equilibrium pair. When this is true, w∗ is adapted to x∗.

Proof. The sufficiency follows since (26) is equivalent with the condition R̂i(w∗| P) ≤ Φ̂(x∗, w∗) and,
under the assumption x∗ � P , (27) is equivalent with the condition Φ(x∗, w∗) ≤ H(x∗). Thus, when
(x∗, w∗) is a Nash equilibrium pair, R̂i(w∗| P) ≤ H(x∗), hence, by the minimax inequality, x∗ andw∗ are
optimal strategies and Hmax(P) = R̂imin(P). As we assumed that H(x∗) <∞, γ̂(P) is in equilibrium.

The necessity and the last part of the theorem follow from Proposition 1 and the above noticed
equivalent forms of the saddle-value inequalities.

Elaborating slightly, we obtain the following corollary:
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Corollary 1. Let P be a preparation and consider strategies x∗, w∗ with x∗ ∈ ctr(P), w∗ adapted to x∗

and H(x∗) <∞. Then γ̂(P) is in equilibrium with x∗ as bi-optimal strategy if and only if,

∀x ∈ P : Φ̂(x,w∗) ≤ H(x∗) . (29)

Proof. Under the conditions stated, (27) is automatic and (29) is a reformulation of (26). Thus (29)
implies that (x∗, w∗) is a Nash equilibrium pair and the result then follows from Theorem 2.

A main consequence of the existence of a bi-optimal strategy is the validity of the Pythagorean
inequalities. The direct Pythagorean inequality, or just the Pythagorean inequality, is the inequality
H(x) + D̂(x,w∗) ≤ H(x∗), typically considered for x ∈ P . This is nothing but a trivial rewriting
of (29). When it holds, H(x∗) = Hmax(P) and the inequality for an individual state x ∈ P is,
therefore, a sharper form of the trivial inequality H(x) ≤ Hmax(P). The dual Pythagorean inequality
is the inequality R̂i(w∗|P) + D̂(x∗, w) ≤ R̂i(w| P), typically considered for w � P . When it holds,
R̂i(w∗| P) = R̂imin(P), and the inequality for an individual strategy w � P is, therefore, a sharper form
of the trivial inequality R̂imin(P) ≤ R̂i(w| P).

Theorem 3. [Pythagorean inequalities] If γ̂(P) is in equilibrium with x∗ as a bi-optimal strategy then,
with w∗ = x̂∗, the direct as well as the dual Pythagorean inequality holds:

∀x ∈ P : H(x) + D̂(x,w∗) ≤ H(x∗) , (30)

∀w � P :R̂i(w∗| P) + D̂(x∗, w) ≤ R̂i(w| P) . (31)

Proof. As to (30), this follows from Corollary 1. Also (31) must hold since, for w � P ,

R̂i(w∗| P) + D̂(x∗, w) = H(x∗) + D̂(x∗, w) = Φ̂(x∗, w) ≤ R̂i(w| P) .

The simple translation of results to games of type γ(P) rather than type γ̂(P) is left to the reader.

For the last results of this section we find it more natural to work in the Y -domain.
First we point to an extra property of bi-optimal strategies which follows from (30). In order to

formulate this in a convenient way we need some definitions. A sequence (xn) of states converges in
divergence to the state x, written xn

D→ x, if limn→∞D(xn, x) = 0. This requires that (xn, x) ∈ X ⊗ Y
for all n. If xn ∈ P for all n, we say that (xn) is asymptotically optimal, more precisely asymptotically
optimal for Nature in the game γ(P), if H(xn)→ Hmax(P) as n→∞. Finally, a state x (not necessarily
in P) is a maximum entropy attractor for P , or an Hmax-attractor, if xn

D→ x for every asymptotically
optimal sequence. We can now state a trivial corollary to Theorem 3 (transformed to the Y -domain):

Corollary 2. Any bi-optimal strategy x∗ of a game γ(P) in equilibrium, is a maximum entropy attractor
for P .

One can establish existence of the attractor in many cases, even if the bi-optimal strategy does not
exist. We shall return to this issue in Section 14.

Dual versions of the notions and results indicated above could be introduced, depending on (31) rather
than on (30). However, it seems that the notions related to the direct pythagorean inequality are the more
useful ones.
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The pythagorean flavour of (30) is more pronounced when one turns to models of updating, cf.
Sections 11 and 18.

For the corollary to follow we need an abstract version of Jeffrey’s divergence given, for two states x1

and x2 by
J(x1, x2) = D(x1, x2) + D(x2, x1) . (32)

Corollary 3. [transitivity inequality] If γ(P) is in equilibrium with x∗ as a bi-optimal strategy, then, for
every state x ∈ P and every belief instance y � P , the inequality

H(x) + D(x, x∗) + D(x∗, y) ≤ Ri(y| P) (33)

holds. In particular, for every x ∈ ctr(P),

H(x) + J(x, x∗) ≤ Ri(x| P). (34)

Proof. First note that also γ̂(P) is in equilibrium with x∗ as bi-optimal strategy. Then, putting w∗ = x̂∗,
(30) and(31) hold. Therefore, and as H(x∗) = R̂i(w∗|P), for x ∈ P and w � P ,

H(x) + D̂(x,w∗) + D̂(x∗, w) ≤ R̂i(w|P) . (35)

To a given belief instance y with y � P we then apply (35) with w = ŷ. As D̂(x,w∗) = D(x, x∗),
D̂(x∗, w) = D(x∗, y) and R̂i(w|P) = Ri(y|P), (33) follows.

We refer to (33) as the transitivity inequality. It is a sharper version of the trivial inequality H(x) ≤
Ri(y| P). It combines both Pythagorean inequalities and these are easily derived from it. If Ri(y| P) <

∞, the inequality holds with equality if and only if both Pythagorean inequalities (30) and (31) hold with
equality .

As to the last part of Corollary 3, we note that if you put r = Ri(x| P) − H(x), then the bi-optimal
strategy has Jeffrey divergence at most r from x.

11. Games based on Utility, Updating

In the previous section we investigated games related to an effort-based information triple. Similar
notions and results apply when we start-out with a utility-based triple. Let us work in the Y -domain and
start out with a utility based information triple (U,M,D) over X ⊗ Y . Then, given a preparation P , the
associated game γ(P |U) has Observer as maximizer and Nature as minimizer 11 and the two values of
the game are, for Nature, the minimax utility Mmin(P):

Mmin(P) = inf
x∈P

sup
y�x

U(x, y) = inf
x∈P

M(x) , (36)

and, for Observer, the corresponding maximin value

sup
y�P

inf
x∈P

U(x, y) . (37)

11 thus, if T in γ(P |T ) is declared as a utility function, this convention applies, whereas if T is a declared effort function,
the players swop roles with Observer as minimizer and Nature as maximizer as in the previous section.
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For y � P , the infimum occurring here is the guaranteed utility associated with the strategy y. We
denote it Gtu(y| P). The maximin value (37) is also referred to as the maximal guaranteed utility. We
denote it Gtumax(P):

Gtumax(P) = sup
y�P

Gtu(y| P) = sup
y�P

inf
x∈P

U(x, y) . (38)

Notions and results, e.g. related to equilibrium, to optimal or bi-optimal strategies etc. are developed in
an obvious manner, either by following Section 10 in parallel or by applying the results of Section 10
to the effort-based triple (−U,−M,D). We leave this for the interested reader to do. However, for the
important case of updating, cf. Section 8, we shall be more explicit.

We take as starting point a general divergence function D on X ⊗ Y , a preparation P and a prior y0

with Dy0 < ∞ on P . The game associated with the utility-based information triple (U|y0 ,D
y0 ,D) we

denote γ(P ; y0). Following Section 10, the value for Nature in γ(P ; y0) is infx∈P Dy0(x), also denoted
Dmin(P ; y0) and referred to as the the minimum divergence value or the MinDiv-value:

Dmin(P ; y0) = inf
x∈P

D(x, y0) . (39)

An optimal strategy for Nature is here called a D-projection of y0 on P . If Nature has a unique optimal
strategy, it is the D-projection of y0 on P . Consider an Observer strategy y � P , i.e. a possible
posterior. We use the same notation as in the general case, “Gtu” , to indicate Observers evaluation of the
performance of the posterior. Incidentally, the letters can here be taken to stand for “guaranteed updating
(gain)” . Thus

Gtu(y| P ; y0) = inf
x∈P

U|y0(x, y) = inf
x∈P

(
D(x, y0)−D(x, y)

)
(40)

is the guaranteed updating gain associated with the choice y of posterior, and

Gtumax(P ; y0) = sup
y�P

Gtu(y| P ; y0) (41)

is Observers value of the game, the maximum guaranteed updating gain, or the MaxGtu-value of
γ(P ; y0).

The basic results for the updating game may be summarized as follows:

Theorem 4. Let D be a general divergence function on X⊗Y , P a preparation and y0 a belief instance
with Dy0 <∞ on P . Consider the updating game γ = γ(P ; y0).

If x∗ ∈ ctr(P), then γ is in equilibrium with x∗ as bi-optimal strategy if and only if the Pythagorean
inequality

D(x, y0) ≥ D(x, x∗) + D(x∗, y0) (42)

holds for every x ∈ P . And if this condition is satisfied, x∗ is the D-projection of y0 on P . Furthermore,
the dual pythagorean inequality

Gtu(y| P ; y0) + D(x∗, y) ≤ Gtu(x∗| P ; y0) (43)

holds for every y � P .
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The proof can be carried out by applying Corollary 1 and Theorem 3 to the effort function Φ|y0
associated with the updating game considered, cf. (16). Details are left to the reader.

The concept of an attractor, cf. Corollary 2, also makes sense for updating games. Then the relevant
notion is that of a relative attractor given y0, also called the Dy0

min-attractor, which is defined as a state
x∗ such that, for every sequence (xn) in P with D(xn, y0) → Dmin(P ; y0) it holds that xn

D→ x∗. In
the situation covered by Theorem 4 – assuming also that limit states for convergence in divergence are
unique – the relative attractor exists and coincides with the bi-optimal strategy.

The Pythagorean inequality originated with Chentsov [54] and Csiszár [55] where updating in a
probabilistic setting was considered. Further versions, still probabilistic in nature can be found in Csiszár
and Matus [56]. In [57] these authors present a general abstract study. We also mention Glonti et al [58]
where you find a reversed Pythagorean inequality which results by applying the (direct) Pythagorean
inequality to a system as given by the triple (17).

12. Formulating results with a geometric flavour

The results of Section 10 are formulated analytically, based on properties of the effort function. In this
section we make a translation to results which have a certain geometric flavour. We shall work entirely
in the Y -domain and assume throughout the section that (Φ,H,D) is an effort-based information triple.

In the previous sections, we had a fixed preparation in mind. Here, we shall also discuss to which
extent you can change a preparation without changing an optimal strategy.

Sublevel sets of the form {Φy ≤ a} play a a key role. These sets appeared before as primitive feasible
preparations. Here they have a different role and we prefer to use the bracket notation as above.

Proposition 2. Let x∗ be a state with finite entropy h = H(x∗). Then, given a preparation P , the
necessary and sufficient condition that the game γ(P) is in equilibrium with x∗ as bi-optimal strategy
is that P is squeezed in between {x∗} and {Φx∗ ≤ h}, i.e. that x∗ ∈ P ⊆ {Φx∗ ≤ h}. In particular,
{Φx∗ ≤ h} is the largest such preparation.

This follows directly from Theorem 2 and Corollary 1.
For a fixed preparation P , we can express the two values of γ(P), Hmax(P) and Rimin(P), in a

geometrically flavoured way. This will be done whether or not the game is in equilibrium and the result
can thus be used to check if the game is in fact in equilibrium. It is convenient to introduce some
preparatory terminology.

Firstly, a subset of X is an entropy sublevel set if it is a (non-empty) set of the form {H ≤ a}.
The size of such a set is the smallest number a which can occur in this representation (clearly equal
to the MaxEnt-value associated with the preparation {H ≤ a}). Given a preparation P , the associated
enveloping entropy sublevel set is the smallest entropy sublevel set containing P .

Secondly, and quite analogously in view of (22) and (23), we introduce the size of the Φy-sublevel set
{Φy ≤ a} as the smallest number awhich can occur in this representation. And we define the enveloping
Φy-sublevel set associated with P to be the smallest Φy-sublevel set containing P .

Proposition 3. Consider the game γ(P) associated with a preparation P . Then:
(i) The MaxEnt-value Hmax(P) is the size of the enveloping entropy sublevel set associated with P;
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(ii) For fixed y � P , Ri(y| P) is the size of the enveloping Φy-sublevel set associated with P .
(iii) The MinRisk-value Rimin(P) is the infimum over y � P of the sizes of the enveloping Φy-sublevel

sets associated with P .

In view of (22), (23) and (24), this is obvious. Some comments on the result are in order. In (i)
it is understood that the size is infinite if no entropy sublevel set exists which contains P . A similar
convention applies to (ii). Also note that the result gives rise to a simple geometrically flavoured proof
of the minimax inequality (25) by noting that for each y � P and each h, {Φy ≤ h} ⊆ {H ≤ h}.

There are two families of sets involved in Proposition 3, the entropy sublevel sets and the Φy-sublevel
sets. As the proposition shows, both families give valuable information about the games we are interested
in. From the second family alone, one can in fact obtain rather complete information. Indeed, if {Φy ≤
a} contains a given preparation for appropriately chosen y and a, the associated game is well behaved:

Proposition 4. Given a preparation P , a necessary and sufficient condition that γ(P) is in equilibrium
and has a bi-optimal strategy is that {Φy ≤ a} ⊇ P for some (y, a) with y ∈ P and a = H(y). When
the condition is fulfilled, a is the value of the game and y the bi-optimal strategy.

The simple proof is left to the reader. It is the sufficiency which is most useful in practical applications.
The results above translate without difficulty to results about games associated with a utility-based

information triple (U,M,D). For this, superlevel sets of the form {Uy ≥ k} as well as strict sublevel
sets of the form either {M < a} or {Uy < a} play an important role. The notion of size of these
latter sets, those defined by strict inequality, is defined as the largest value of a which can occur in the
representations given (note: largest rather than smallest as was the case before).

We shall consider the largest sets of the form {M < a}, respectively {Uy < a}, which are contained
in the complement {P or, as we shall consistently prefer to say below, which are external to P .

Either directly – or as corollaries to Propositions 2, 3 and 4 applied to the effort-based triple
(−U,−M,D) – one derives the following results:

Proposition 5. Let (U,M,D) be a utility-based information triple and consider a state x∗ with k =

M(x∗) > −∞. Then, for any preparation P , the game γ(P |U) is in equilibrium with x∗ as bi-optimal
strategy if and only if x∗ ∈ P ⊆ {Ux∗ ≥ k}. In particular, the largest such preparation is the superlevel
set {Ux∗ ≥ k}.

Proposition 6. Let (U,M,D) be a utility-based information triple and consider a preparation P and the
associated game γ(P |U). Then:

(i) The value Mmin(P) is the size of the largest strict sublevel set {M < a} which is external to P .
(ii) For fixed y � P , Gtu(y| P) is the size of the largest strict sublevel set {Uy < a} which is external

to P .
(iii) The value Gtumax(P), as the supremum of Gtu(y| P), is the supremum of all sizes of sets of the

form {Uy < a} with y � P which are external to P .

Proposition 7. Let (U,M,D) be a utility-based information triple and consider a preparation P . Then
a necessary and sufficient condition that γ(P |U) is in equilibrium and has a bi-optimal strategy is that
{Uy < a} is external to P for some (y, a) with y ∈ P and a = M(y). When the condition is fulfilled, a
is the value of the game and y the bi-optimal strategy.
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We also note that the minimax inequality Gtumax(P) ≤ Mmin(P) follows from Proposition 6 by
applying the fact that, generally, {M < a} ⊆ {Uy < a}.

Let us look specifically at models of updating, cf. Section 11.
Given is a general divergence function D on X ⊗ Y and we consider preparations P and priors y0

for which Dy0 < ∞ on P . The sets we shall focus on related to the games γ(P ; y0) are of two types,
which we associate with, respectively “balls” and “half-spaces”. Firstly, for r > 0, consider the open
divergence ball with radius r and centre y0, defined as the Dy0-sublevel set

B(r|y0) = {Dy0 < r} . (44)

In case r = D(x∗, y0) for some state x∗, we write this set as B(x∗|y0):

B(x∗|y0) = B(D(x∗, y0)|y0) = {x|D(x, y0) < D(x∗, y0)} . (45)

And, secondly, we consider sets – all referred to as half-spaces – of one of the following forms

σ+(y, a|y0) = {x|U|y0 < a} = {x|D(x, y0)−D(x, y) < a} (46)

σ−(y, a|y0) = {x|U|y0 ≥ a} = {x|D(x, y0)−D(x, y) ≥ a} (47)

σ+(y|y0) = {x|U|y0 < D(y, y0)} = {x|D(x, y0)−D(x, y) < D(y, y0} (48)

σ−(y|y0) = {x|U|y0 ≥ D(y, y0} = {x|D(x, y0)−D(x, y) ≥ D(y, y0)} (49)

Associated with the sets introduced we define certain “boundary sets” , respectively peripheries and
hyper-spaces. Notation and definition for the former type of sets is given by

∂ B(r|y0) = {x|D(x, y0) = r} and

∂ B(x∗|yo) = {x|D(x, y0) = D(x∗, y0)}

and for the latter type we use

∂σ(y, a|y0) = {x|D(x, y0)−D(x, y) = a} and

∂σ(y|y0) = {x|D(x, y0)−D(x, y) = D(y, y0)} .

When translating basic parts of Propositions 5, 6 and 7 to the setting we are now considering, we find
the following result:

Proposition 8. Let D be a general divergence function on X⊗Y and consider a belief instance y0 � X

such that Dy0 <∞. Then the following results hold for the associated updating games with y0 as prior:
(i) For any x∗ ∈ X , the largest preparation P for which γ(P ; y0) is in equilibrium with x∗ as

bi-optimal strategy, hence with x∗ as the D-projection of y0 on P , is the half-space σ−(x∗|yo).
(ii) For a fixed updating game γ(P y0), the MinDiv-value Dmin(P ; y0) is the size of the largest

strict divergence ball B(r|y0) which is external to P , and the maximal guaranteed updating gain
Gtumax(P ; y0) is the supremum of a for which there exists y � P such that the half-space σ+(y, a|y0) is
external to P .

(iii) An updating game γ(P ; y0) is in equilibrium and has a bi-optimal strategy if and only if, for some
y ∈ P , the half-space σ+(y|y0) is external to P . When this condition holds, y is the bi-optimal strategy,
hence the D-projection of y0 on P .
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13. Robustness and Core

Let (Φ̂,H, D̂) be an effort-based information triple over X ⊗ Ŷ and (Φ,H,D) the derived triple.
We shall study special circumstances under which the crucial condition (29) holds. Consider a

preparation P and let w∗ be a permissable Observer-strategy for the game γ̂(P), i.e. w∗ � P . This
strategy is robust for γ̂(P) if the effort with that strategy for Observer is finite and independent of
Natures strategy, i.e. if, for some finite constant h, Φ̂(x,w∗) = h for all x ∈ P . The constant h is the
level of robustness. Similarly, y∗ � P is robust for γ(P) at the level h if Φ(x, y∗) = h for all x ∈ P .

Theorem 5. [Robustness theorem] Let (x∗, w∗) be an adapted pair of permissable strategies for γ̂(P)

and assume that w∗ is robust with level of robustness h. Then γ̂(P) is in equilibrium with h as value
and with x∗ as bi-optimal strategy. Furthermore, for any x ∈ P , the Pythagorean inequality holds with
equality:

H(x) + D̂(x,w∗) = Hmax(P) . (50)

Similarly, if (x∗, y∗) are permissable strategies for γ(P), if y∗ is response-equivalent to x∗ (hence
y∗ = x∗ if response is injective) and if y∗ is robust for γ(P) with level of robustness h, then γ(P) is in
equilibrium with x∗ as bi-optimal strategy and, for x ∈ P ,

H(x) + D(x, y∗) = Hmax(P) . (51)

The result follows directly from Theorem 2 and the linking identity. The equality (50) or (51) for
x ∈ P is the Pythagorean equality, here in an abstract version. A more compact geometry flavoured
formulation of the first part of Theorem 5 à la Corollary 1 runs as follows:

Corollary 4. If h is finite and x∗ ∈ P ⊆ P x̂∗(h), then h = H(x∗) and γ̂(P) is in equilibrium with x∗ as
bi-optimal strategy.

Whereas Theorem 2, Corollary 1 and Proposition 2 demonstrate the significance of sublevel sets,
Theorem 5 and Corollary 4 does the same but for level sets.

In case response is injective, the second part of Theorem 5 really only involves one element, x∗, as
the other element, y∗, has to be identical to x∗. The two essential conditions are one on x∗ as a strategy
for Nature, viz. that it is consistent, and one on x∗ as a strategy for Observer, viz. that it is robust. There
can only be one such element. If we drop the condition of consistency, there may be many more such
elements. They form what we shall call the core of γ(P).

The core is defined both for the Y - and for the Ŷ - domain, and whether or not response is injective,
by the formulas

core(P) = {y ∈ Y |∃h <∞ : P ⊆ Py(h)} , (52)

corê (P) = {w ∈ Ŷ |∃h <∞ : P ⊆ Pw(h) . (53)

By definition, y � P if y ∈ core(P) and w � P if w ∈ corê (P).
If need be, we write core(P|Φ) and corê (P|Φ̂).
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For a family P of preparations the core, is defined as the intersection of the individual cores:

core(P) =
⋂
P∈P

core(P) (54)

corê (P) =
⋂
P∈P

corê (P) . (55)

The notion is particularly useful for preparation families consisting of strict feasible preparations.
Consider a typical such family, Py, specified by a set y= (y1, · · · , yn) of elements of Y , cf. (19). From
the definitions introduced and from the robustness theorem you derive the following simple, but useful
result:

Theorem 6. Consider a preparation family Py with y = (y1, · · · , yn). Let x∗ be a state, put y∗ = x∗

and assume that y∗ ∈ core(Py|Φ). Further, put h = (h1, · · · , hn) with hi = Φ(x∗, yi) for i = 1, · · · , n
and assume that these constants are finite. Then Py(h) ∈ Py and γ

(
Py(h)

)
is in equilibrium and has

x∗ as bi-optimal strategy. In particular, x∗ is the MaxEnt strategy for Py(h).

We leave it to the reader to formulate analagous results as above for the Ŷ -domain.
The notions robustness and core also make sense for games defined in terms of utility-based

information triples. If (U,M,D) is such a triple, we simply apply the above definitions to the associasted
effort-based triple (−U,−M, D).

The notion of robustness has not received much attention in a game theoretical setting. It is implicit
in [55] and in [25] and perhaps first formulated in [23]. Apparently, the existence of suitable robust
strategies is a strong assumption. However, for typical models appearing in applications, the assumption
is often fulfilled when optimal strategies exist. Results from[26] point in this direction.

14. Adding convexity

It has been recognized since long that notions of convexity play an important role for basic properties
of Shannon theory and optimization theory in general. We have deliberately postponed the introduction
of this element in our abstract modelling until this late moment. Thereby we demonstrate that a large
number of concepts and results, especially those related to games of information, can be formulated
quite abstractly and do not require convexity considerations. Our late introduction of convexity also
emphasizes exactly where this notion comes in. In this connection note the results starting with Theorem
7 below.

Throughout the section we assume that X is a convex topological space, i.e. that X is convex and
provided with a Hausdorff topology which renders the algebraic operations continuous. The convex hull
of a preparation P is denoted co(P) and the closed convex hull is denoted co(P). We assume that the
relation of visibility is adapted to the convex structure in the sense that, firstly, for every y ∈ Y , ]y[ is
convex and closed and, secondly, y covers a convex combination, say y � x =

∑
αixi, if and only if

y covers every xi with αi > 0. In particular, for every convex combination x =
∑
αixi, it holds that

x � xi for all i with αi > 0. In the foregoing, as in the sequal, a convex combination is understood to
be a finite convex combination, often written as above without introducing any special notation for the
relevant index set. The topology is referred to as the reference topology and convergence of sequences in
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this topology is denoted xn → x or simillar. We leave it to the interestred reader to keep track of results
– possibly suitably reformulated – which only require the sufficiency part in the above requirement for
the condition y � x.

For Lemma 1 and Theorem 7 below, an effort-based information triple (Φ,H,D) over X ⊗ Y is in
the background, whereas the last results, Theorem 8 and Theorem 9, are based on a general divergence
function D.

For the functions involved in our modelling, emphasis will be on properties of concavity, convexity
and affinity. For the effort function Φ, we will consider such properties for the y-marginals Φy – either
all of them or only those with y ∈ X . Concavity of Φy means that if

∑
αixi is a convex combination

such that y � ∑αixi, then Φ(
∑
αixi, y) ≥ ∑αiΦ(xi, y). For convexity the inequality sign is turned

around and for affinity it is replaced by equality.
For states x ∈ X , conditions of sequential lower semi-continuity on X for Dx as well as for Dx will

be of significance. Let (xn) be a convergent sequence in X , say xn → x∗. Then, for Dx the condition
is that D(x∗, x) ≤ lim infn→∞D(xn, x) and, for Dx, that D(x, x∗) ≤ lim infn→∞D(x, xn). The latter
condition is to be understood in the sense that if lim infn→∞D(x, xn) < ∞ (which presupposes that
xn � x, eventually), then x∗ � x and the stated inequality holds.

Basic properties of entropy and divergence under added conditions about the marginals Φy are
contained in the following result:

Lemma 1. (i) Assume that all marginals Φy with y ∈ X are concave. Then, for every convex
combination x =

∑
αixi of elements in X ,

H
(∑

αixi

)
≥
∑

αi H(xi) +
∑

αi D(xi, x) . (56)

In particular, H is strictly concave on X . If the marginals Φy with y ∈ X are even affine, equality holds
in (56).

(ii) Assume that all marginals Φy with y ∈ Y are affine. Then, for every convex combination x =∑
i αixi of elements in X with H(x) <∞, and for every y ∈ Y with y � x,∑

αi D(xi, y) = D
(∑

αixi, y
)

+
∑

αi D(xi, x) . (57)

In particular, for y ∈ Y , the restriction of Dy to convex preparations P with Hmax(P) < ∞ is strictly
convex.

The result is a slight variation over Theorem 1 of [50]. The proof is straightforward – first establishing
(56) and then deriving (57) from (56).

Referring to terminology from [59], we refer to the general validity of (57) as the compensation
identity with the last term in (57) as compensation term. Often, (57) is only needed for elements y ∈ X .
Then one need only assume affinity of Φy for y ∈ X .

For an even mixture x = 1
2
x1 + 1

2
x2, the compensation term is the (abstract) Jensen-Shannon

divergence between x1 and x2 for which we use the notation

JSD(x1, x2) =
1

2
D(x1, x) +

1

2
D(x2, x) with x =

1

2
x1 +

1

2
x2 . (58)
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We turn to a continuation of our study of games of information. An easy consequence of the strict
concavity of H in Lemma 1 is that the MaxEnt-strategy for games γ(P |Φ) with a convex preparation is
unique – if only Hmax(P) <∞. A similar remark applies to uniqueness of optimal strategies for Nature
in games based on utility.

From our previous study in Section 10 we have realized the central importance of (29), equivalent to
Ri(y∗| P) ≤ H(x∗). From that condition, assuming also x∗ ∈ P , you can conclude equilibrium of γ(P)

and also identify the bi-optimal strategy. In particular, you can conclude that H(x∗) = Hmax(P). Adding
conditions of convexity, (29) actually follows from the formally weaker condition H(x∗) = Hmax as we
shall now see:

Theorem 7. Assume that the marginal functions Φy with y ∈ X are concave and that the marginal
functions Dx with x ∈ X are sequentially lower semi-continuous on X . Let P be a convex preparation
and let x∗ ∈ P have finite entropy. Then, the condition H(x∗) = Hmax(P) is not only necessary, but also
sufficient for (29) to hold, hence for γ(P) to be in equilibrium with x∗ as bi-optimal strategy.

Proof. In order to establish (29), consider an element x ∈ P and apply (56) to a convex combination of
the form yn = (1 − 1

n
)x∗ + 1

n
x. We find that H(x∗) ≥ H(yn) ≥ (1 − 1

n
) H(x∗) + 1

n
H(x) + 1

n
D(x, yn)

from which we conclude that H(x) + D(x, yn) ≤ H(x∗). By sequential lower semi-continuity of Dx∗ ,
x∗ � x and H(x) + D(x, x∗) ≤ H(x∗) follows. As x ∈ P was arbitrary, (29) holds. The result then
follows from Corollary 1.

One may criticize the result as you cannot apply it to feasible preparations in case the marginals Φy are
strictly concave, since then the feasible preparations will, typically, not be convex. Rather than reacting
negatively towards this observation, we take it as a strong indication that really useful modelling requires
that the marginals Φy are in fact affine.

The kind of reasoning in the above proof can be expanded, roughly speaking by replacing the occuring
optimal strategy by an asymptotically optimal sequence, and then leads to results about existence of the
maximum entropy attractor, cf. [50] as pointed to before. We shall not go into that for games based on
an effort function but will do so below when we turn to games of updating, cf. Theorem 9.

Translating Theorem 7 to a setting based on utility and formulating it with an assumption of affinity
instead of concavity, one finds the following result:

Corollary 5. Let (U,M,D) be a utility-based information triple. Assume that all marginals Uy with
y ∈ X are affine and that all marginals Dx with x ∈ X are sequentially lower semi-continuous on
X . Let P be a convex preparation and x∗ a state in P with M(x∗) finite. Then, if M(x∗) = Mmin(P),
x∗ ∈ ctr(P) and the game γ(P |U) is in equilibrium and has x∗ as bi-optimal strategy. In particular, the
pythagorean inequality M(x) ≥ D(x, x∗) + M(x∗) holds for every x ∈ P .

Finally, we shall investigate updating games under convexity. For this, D is a general divergence
function on X ⊗ Y . We shall say that the compensation identity holds for D if (57) holds for every
convex combination x =

∑
αixi of states and every y � x.

Theorem 8. Assume that the compensation identity holds for the divergence function D on X ⊗ Y and
that the marginal functions Dx with x ∈ X are sequentially lower semi-continuous on X . Consider a
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convex preparation P and an associated prior y0. Then, if the D-projection of y0 on P exists, say equal
to x∗, it holds that x∗ � P and that the updating game γ(P |U|y0) is in equilibrium with x∗ as bi-optimal
strategy. In particular, the pythagorean inequality (42) holds for all x ∈ P .

Proof. We shall apply Corollary 5 to the utility-based triple (U|y0 ,D
y0 ,D) on P ×[P ]. Consider any y ∈

Y and any convex combination x =
∑
αixi of states in P . As Dy0 < ∞ on P , the sum

∑
αi D(xi, y0)

is finite. By the compensation identity, so is the sum
∑
αi D(xi, x). For y ∈ Y , we find that

U|y0(x, y) = D(x, y0)−D(x, y)

=
(∑

αi D(xi, y0)−
∑

αi D(xi, x)
)
−
(∑

αi D(xi, y)−
∑

αi D(xi, x)
)

=
∑

αi D(xi, y0)−
∑

αi D(xi, y)

=
∑

αi U|y0(xi, y) .

Thus the condition of affinity from Corollary 5 is fulfilled. The result follows.

It lies nearby to search for conditions which ensure existence of the D-projection. This requires extra
properties. A sequence (xn) of states is a JSD- Cauchy sequence if

lim
n,m→∞

JSD(xn, xm) = 0 . (59)

AndX is JSD-complete if every JSD-Cauchy sequence converges in the reference topology. This notion
is adapted from [50] 12. Let us collect the key results about updating games in one theorem:

Theorem 9. Assume that the compensation identity holds for D, that X is JSD-complete, and that, for
x ∈ X , the marginal functions Dx as well as Dx are sequentially lower semi-continuous on X . Consider
a preparation P and an associated prior y0. Then the following holds:

(i) Observer strategies for γ(co(P); y0) and for γ(P ; y0) coincide, i.e. [co(P)] = [P ], and for every
such strategy y, Gtu(y| co(P); y0) = Gtu(y| P ; y0), hence

Gtumax(co(P); y0) = Gtumax(P ; y0). (60)

(ii) Without adding extra conditions, Observer has a unique optimal strategy, y∗, in the game γ(P ; y0).
(iii) If P is convex, the game γ(P) is in equilibrium and the Dy0

min-attractor exists. This attractor, say
x∗, is identical to the optimal Observer strategy y∗ from (ii); it is the D-projection of y0 on P if and only
if x∗ ∈ P .

(iv) If P is closed and convex, the D-projection of y0 on P exists.
(v) The game γ(P |y0) is in equilibrium if and only if

Dmin(co(P); y0) = Dmin(P ; y0) . (61)

12 In fact, we only need the condition that a JSD-Cauchy sequence has a convergent subsequence; however, this condition is
very close to the stated condition which follows from it under an added assumption of joint lower semi-continuity of D.
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Proof. The results follow by adapting Theorem 2 and Corollary 1 of [50] to the present setting. Let us
indicate the details.

The proof of (i) is trivial. Now assume that P is convex and let us analyze the game γ = γ(P ; y0).
Consider a sequence (xn) of states in P such that D(xn, y0) → D with D = Dmin(P ; y0). Put δn =

D(xn, y0)−D and assume that δn < 1. Appealing to convexity of P and to the compensation identity, it
is seen that (xn) is a JSD-Cauchy sequence. Then xn → x∗, say. We may assume that all δn are positive
(otherwise we are in a situation which can be covered by Theorem 8). Given x ∈ P , consider (yn) given
by yn =

√
δnx+ (1−

√
δn)x∗. Apply the fact that D ≤ D(yn, y0), use the compensation identity, throw

away one term and divide by
√
δn. This shows that D(x, yn)+D(xn, y0) ≤ D(x, y0)+

√
δn. Going to the

limit and exploiting the semi-continuity property of Dx, we find that x∗ � x and that D ≤ U|y0(x, x
∗).

As this holds for every x ∈ P , we conclude that y∗ = x∗ is in [P ] and that D ≤ Gtu(y∗| P ; y0). Thus y∗

is an optimal Observer strategy and also, we see that x∗ is the Dy0
min-attractor. From these observations

and from (i), the remaining properties claimed are easily derived.

Part II
Applications

15. Protection against misinformation

We start out with a very general type of application which deals with a theme that has been important
for the development of the notion of proper score functions.

In a sense, what we shall discuss here is what happens if Nature can communicate. Then we speak
instead of Expert. And Observer becomes Customer. Expert holds the truth, x, or rather, x represents
Experts best evaluation of what the truth is. Customer wants to know what Expert thinks about a certain
situation and asks Expert for advice – against payment, to be agreed upon. For despicable reasons,
Expert may be tempted to advice against better knowing, i.e. to give as advice y, instead of the honest
advice x. Misinformation could either be due to the difficulty Expert may have in reaching a true expert
opinion or it could be out of self-interest, with Expert taking advantage of false information given to
Customer. Or Expert may try to mislead Customer in order to hide a bussiness secret.

We assume that truth will be revealed to both Expert and Customer soon after Expert has given
advice to Customer and further, that a proper effort function Φ = Φ(x, y) is known to both Expert and
Customer. We shall device a payment scheme which will protect Customer against misinformation. The
idea is simple. At the time of signing a contract – before advice is given – Customer pays a flat sum to
Expert and further, Expert and Customer agree on an insurance scheme stipulating a penalty to be payed
by Expert to Customer proportional to Φ(x∗, y) where x∗ represents what really happened and y is the
advice given. If Expert is confident that he knows what will happen, he will assume that x∗ = x will
hold and it will be in his own interest to give to Customer the honest advice y = x.

In the literature this scheme is mainly considered based on a proper score function, the same as a
proper utility function. This gives an obvious variation of the payment scheme with the score function
determining payment from Customer to Expert. The most often treated situation is probably that
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of weather forecasting with Brier [40] the first and Weijs and Giesen [60] the presently most recent
contribution. But also situations from economy and statistics have been studied frequently. Apart from
sources just cited we refer to the sources pointed to in Section 6 and to McCarthy [61] as well as to the
recent contribution [62] by Chambers. As a final reference we point to Hilden [63] where applications
to diagnostics is discussed.

Works cited and their references will reveal a rich literature. With access to our abstract modelling,
further meaningful applications, not necessarily tied to probabilistic modelling may emerge.

16. Cause and Effect

We continue with one more section where the basic interpretations are changed. For this we assume
that Y = X and define X̂ = Ŷ , equivalently, X̂ = W . Elements of X are now interpreted as causes
and response, considered as a map defined on X , as the transformation of a cause into its associated
consequence. This change moves the focus from Observers thoughts as discussed in Section 3 to a
reflection of causality in Nature, a basic mechanism of the world. The set-up is in this way conceived as
a model of cause and effect.

Previously we considered possible choices of Observer (for γ- or γ̂-type games). Now it is more
pertinent to focus on consequences – elements of W – as possible observations by Observer of the effect
of the actual cause. For x ∈ X and w ∈ W , Φ̂(x,w) may now be interpreted as the cost to Observer if
he has observed (or belives to have observed) the effect w when the actual cause is x.

Consider the game γ̂, say with preparation P = X . With the new interpretation in mind it appears
particularly pertinent to consider Observers risk associated with the various possible observations.

Concrete situations where the change of interpretation makes sense, involves information theoretical
problems of capacity (to be included in a later write-up).

17. Atomic triples and generation by integration

We shall define natural building blocks for information triples with a focus on effort-based triples
with effort functions satisfying the perfect match principle. If nothing is said to the contrary, state space
and belief reservoir are identical and visibility is the diffuse relation. Except for some final indications
of possible expansions of the material in this section as well as of the general theory, we do not involve
response or controls.

An atomic effort-based information triple (φ, h, d) over I×I with I a subinterval of ]−∞,∞[ consists
of three real-valued functions, φ = φ(s, u) defined on I × I , h = h(s) defined on I and d = d(s, u)

defined on I × I , such that, for all (s, u) ∈ I × I ,

φ(s, u) = h(s) + d(s, u) , (62)

d(s, u) ≥ 0 , (63)

d(s, u) = 0⇔ u = s . (64)

Clearly, triples defined in this way are indeed effort-based information triples. We may allow that the
functions take the value +∞ at eventual endpoints of I .
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From Section 14 we know that it is important for the effort function to have affine marginals, fixing
the second argument. For this to be the case, there must exist two real-valued functions on I , η and ξ,
such that, for (s, u) ∈ I × I ,

φ(s, u) = sη(u) + ξ(u) . (65)

There is a simple way to generate a multitude of information triples of the type just described. The
method is inspired by Bregman, [64], who used the construction for other purposes. Given is a Bregman
generator h which is here understood to be a continuous, strictly concave function on I which is
sufficiently smooth on the interior of the interval, say continuously differentiable. We take this function
as entropy function. Defining effort and divergence by

φ(s, u) = h(u) + (s− u) h′(u) (66)

d(s, u) = h(u)− h(s) + (s− u) h′(u) , (67)

the information triple (φ, h, d) has an effort function with affine marginals, given u.
As two examples of triples constructed this way, we point to the triple

φ(s, u) = u2 − 2su , (68)

h(s) = −s2 , (69)

d(s, u) = (s− u)2 (70)

over ]−∞,+∞[ 13 and the triple

φ(s, u) = u− s+ s ln
1

u
, (71)

h(s) = s ln
1

s
, (72)

d(s, u) = u− s+ s ln
s

u
(73)

over [0,∞].
The first triple leads to basic concepts of real Hilbert space by a natural process of integration and by

a similar process, the second leads to basic concepts of Shannon information theory. Before returning to
that, we note that there is a natural way to generalize the second example without distroying the essential
property of affinity of the marginals φu. One simply replaces logarithms with deformed logarithms lnq,
where q is a real parameter. Following [65], the deformed logarithms are given by the expression

lnq t =

ln t if q = 1

1
1−q
(
t1−q − 1

)
otherwise .

(74)

13 the reader will realize that it is more natural to consdier the triple (−φ,−h, d) which corresponds to a change of focus
from effort-based triples to utility-based triples. This then requires convexity rather than concavity conditions on the
generator. Though we find it desirable to state concepts and results for both versions, we shall leave this to the interested
reader
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The deformed generator hq defined by

hq(s) = s lnq
1

s
, (75)

is a genuine Bregman generator on [0,∞] for all positive values of q. The atomic triples obtained from
these generators, denoted (φq, hq, dq), constitute the Tsallis family of atomic information triples. For
q = 1, we find the expressions given by (71) – (73) and for other values of q > 0 we find the expressions

φq(s, u) = uq +
quq−1 − 1

1− q s , (76)

hq(s) =
1

1− q
(
sq − s

)
, (77)

dq(s, u) = uq +
1

1− q
(
qsuq−1 − sq

)
. (78)

Here q > 0 but, in fact, we may consider the case q = 0 as a degenerate case. It gives the triple
(1− s, 1− s, 0) which is not a genuine information triple because the divergence function is identically
0. For all other values, i.e. for q > 0, the essential fundamental inequality, i.e. the statement that
dq(s, u) ≥ 0 with equality only if u = s, holds.

Let us return to the process of integration hinted at above. In fact, this process may be applied to any
family of information triples and gives us new triples to work with. And by the linearity of integration, the
essential property of affinity of marginals (the Φy’s) is preserved. Thus divergence functions constructed
this way will, according to Lemma 1, satisfy the compensation identity.

Consider, as the key case, integration of one and the same atomic triple (φ, h, d) over some interval
I with Bregman generator h. Let T be a set provided with a Borel structure and an associated measure
µ. Let X = Y be the function space consisting of all measurable functions x : T 7→ I for which the
integral defining H(x) below converges. Define the full triple (Φ,H,D) by integration, i.e.

Φ(x, y) =

∫
T

φ
(
x(t), y(t)

)
dµ(t) , (79)

H(x) =

∫
T

h
(
x(t)

)
dµ(t) (80)

D(x, y) =

∫
T

d
(
x(t), y(t)

)
dµ(t) . (81)

If the generator is non-negative, we may enlarge the function space and consider all measurable functions
x : T 7→ I . Clearly, (Φ,H,D) is a well defined information triple over X×Y . The divergence functions
which can be obtained in this way are Bregman divergencies. Note that with this construction, the
essential fundamental inequality even holds “coordinatewise”. This follows by (63) and (64) applied to
the atomic divergence function d. For this reason, we refer to (63) and (64) as the pointwise fundamental
inequality. We add that Bregman divergence makes sense for any pair of measurable functions x ∈ X
and y ∈ Y as the integrand in (81) is non-negative. Bregman divergence may be used to modify visibility.
Indeed, one may take X ⊗ Y to consist of all pairs (x, y) ∈ X × Y with D(x, y) <∞.

For the Bregman generator h(s) = −s2 over I =]−∞,+∞[, cf. (68)-(70), the construction leads to
Hilbert space quantities with H(x) = −‖x‖2 and D(x, y) = ‖x− y‖2.
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For the Bregman generator h(s) = s ln 1
s
, cf. (71)-(73), the construction has a few variants. Most

classical, we may consider I = [0, 1] and a countable set A, the alphabet, which is chosen for T and
provided with counting measure. If further we take as X = Y the space of probability distributions
over A, Φ becomes Kerridge inaccuracy, H Shannon entropy and D Kullback-Leibler divergence. If
we generalize to cover non-discrete settings, entropy will only be finite for distributions with countable
support. But the generalization of divergence makes sense more generally. For instance, we may consider
the generator on I = [0,∞] and consider an arbitrary measure space with T as basic set, provided with
some measure µ. As X = Y we can then, as one possibility, take the set of measures absolutely
continuous with respect to µ and with finite-valued Radon-Nikodym derivatives with respect to µ. For
two such measures, say P = pdµ and Q = qdµ we find the generalized Kullback-Leibler divergence
given by

D(P,Q) =

∫ (
p(t) ln

p(t)

q(t)
+ q(t)− p(t)

)
dµ(t) . (82)

If we restrict attention to finite measures P and Q with the same total mass, this reduces to the standard
expression

∫
p ln p

q
dµ. The standard expression also gives a divergence measure if the two measures are

finite andQ(T ) ≤ P (T ) and, moreover, the important compensation identity also holds in this case since
the additional terms (stemming from u− s in (94)) are integrable and affine.

When extending these constructions to cover also integration of the Tsallis family (φq, hq, dq),
we obtain the triples (Φq,Hq,Dq) defined over appropriate function spaces, typically representing
probability distributions. Here Hq – in the discrete case – is Tsallis entropy.

Whereas there is no need to comment on the case q = 1 which leads to classical concepts of Shannon
theory, we shall comment on the extension to Tsallis type concepts, especially on Tsallis entropy. Tsallis’
paper [2] is from 1988 but, originally, the notion goes back to Havrda and Charvát [66], to Daróczy [67]
and to Lindhard and Nielsen [68], [69] who all, independantly of eachother, found the notion of interest.
Characterization via functional equations was studied in Aczél and Daróczy [70], see also the reference
work [71] as well as [39]. Regarding the physical literature, there is a casual reference to Lindhard’s work
in one of Jaynes’ papers, [72]. But only after the publication of Tsallis 1988-paper mathematicians and,
especially, physicists took an interest in the “new” entropy measure. We refer to the database maintained
by Tsallis with more than 2000 references. We shall not comment on that except for a reference to
Naudts, [73] who also emphasized the convenient approach via Bregman generators.

As a final comment on the process of integration, we note that if the divergence function in (81) is
allowed to vary with t: d = dt, then not all these functions need be genuine divergence functions. They
should all be non-negative but the implication dt(x, y) = 0 ⇒ y = x need only hold for some set of
positive µ-measure. Of course, this observation also applies if you work with integration of more general
divergencies than atomic ones. We shall right away see an example where this remark is relevant, viz. for
the process of relativization, cf. Section 8. This process may be viewed as a special case of generation by
integration. Indeed, assuming that Φy0 is finite, the relativized triple (15) may be obtained from the two
triples (Φ,H,D) and (−Φy0 ,−Φy0 , 0) by simple addition. Note that the second triple is not a genuine
information triple as divergence is identically zero. Anyhow, in agreement with the remark above, the
resulting triple is a genuine information triple. If the first triple has affine marginals, so does the second
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and hence also the resulting triple. As in Section 8, we may consider the relativized triple if only Dy0 ,
rather than Φy0 , is assumed to be finite.

We end the section by indicating how the Bregman construction of information triples can trigger
ideas leading to an expansion of not only the atomic triples that arise in this way but of the whole
theoretical set-up. To see what we have in mind, it appears essential to introduce a control space. The
tangent lines in the standard construction may be taken as controls. In fact any line controlling h in
the sense that it lies above the subgraph of h may be considered. Response in the setting above with a
strictly concave generator is then, given u ∈ I , the best control at u in an obvious sense. But really, why
restrict h to be strictly concave? The triples generated are related to problems of global optimization,
especially maximization, and for such problems much more general functions can be allowed. If we just
allow cracks on the graph of the generator, we realize that then response should, sensibly, be replaced
by a set-valued map. Going further, we suggest to the class of “controllable”, e.g. upper bounded,
usc-functions, upper semi-continuous functions, the best controls at a point u will not pass through
(u, h(u)) but through a point on an “upper envelope” of h, defined appropriately.

On philosophical grounds the indicated approach appears preferable. An appeal to methods depending
on global control (via half-spaces corresponding to the straight lines or via other geometrical figures)
seems better adjusted to the type of problems under discussion than methods depending on local
behaviour of functions with the differential calculus as a central tool. Our claim is put forward in spite of
the frightening efficiency of these tools – as also witnessed by the ease of definition of our two concrete
examples, cf. (68) – (73). For basic theoretical investigations an expansion of the theory is desirable.
This poses certain challanges, especially a new form of the fundamental inequality is essential. The
author plans to return to this in the near future.

18. A geometric model

In this section X = Y denotes a real Hilbert space. As visibility we take the diffuse relation X⊗Y =

X × Y . Consider the divergence function

D(x, y) = ‖x− y‖2 (83)

on X × Y . As we saw in Section 17, D may be constructed by integration from the Bregman generator
in (70) and as such it satisfies the compensation identity (57). In this case, the identity is of central
importance for classical least squares analysis14.

If y0 ∈ Y is a prior and the preparation P is convex and closed, the D-projection x∗ of y0 on P
exists; it is the unique point in P which is closest in norm to y0

15. As standard convexity- and continuity
assumptions are also in place, Theorem 8 applies. It follows that the game γ(P ; y0) is in equilibrium
with the D-projection x∗ as bi-optimal strategy. The updating gain for this game is given by (13), i.e.

U|y0(x, y) = ‖x− y0‖2 − ‖x− y‖2 . (84)

14 apparenttly, the identity has no special name in this setting – it would not be unjustified to attach Gauss’ name to it.
15 though classical, the reader may appreciate to note that this existence result is derived with ease and some elegance from

the compensation identity and completeness of Hilbert space.
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In this case the Pythagorean inequality reduces to the classical inequality

‖x− y0‖2 ≥ ‖x− x∗‖2 + ‖x∗ − y0‖2 , (85)

valid for every x ∈ P .
Combining Proposition 8 and Theorem 9 we obtain rather complete information about the updating

games, also for preparations which are not necessarily convex. For instance, Figure 1 illustrates a case
with unique optimal strategies for both players and yet, the game is not in equilibrium. Figure 2 illustrates
a typical case with a game in equilibrium. For both figures, x∗ denotes the optimal strategy for Nature and
y∗ the optimal strategy for Observer. Indicated on the figures you also find the largest strict divergence
ball B(x∗|y0) and the largest half-space σ+(y∗|y0) which is external to P . The two values of the game
can then be determined from the figures, ‖x∗ − y0‖2 for Nature, respectively ‖y∗ − y0‖2 for Observer.

Figure 1. Game not in equilibrium

σ∗(y∗|y0)

x∗|y0)

y0 y∗

x∗
P

It is easy to identify the feasible preparations. The strict ones are affine subspaces and the slack ones
are convex polyhedral subsets. We shall determine the core of families of strict preparations:

Figure 2. Game in equilibrium

σ∗(y∗|y0)

x∗|y0)

y0 x∗ =
y∗

P
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Figure 3. Preparation family and its core

y∗y0 core(P)

P

P

Proposition 9. Consider a family P = Py of strict feasible preparations determined by finitely many
points y = (y1, · · · , yn) inX . The core of this family consists of all points in the affine subspace through
y0 generated by the vectors yi − y0; i = 1, · · · , n, i.e.

core(P) =
{
y0 +

∑
αi(yi − y0)

∣∣(α1, · · · , αn) ∈ Rn
}
. (86)

Proof. An individual member P of P is determined by considering all x ∈ X for which the values of
U|y0(x, yi); i = 1, · · · , n have been fixed. Note that fixing these values is the same as fixing the inner
products 〈x − y0, yi − y0〉 or, equivalently, the inner products 〈x, yi − y0〉. If y∗ is of the form given by
(86), y∗ = y0+

∑
αi(yi−y0), then 〈x, y∗−y0〉 =

∑
αi〈x, yi−y0〉 and we realize that this is independent

of x if x is restricted to run over some preparation in P. Then also U|y0(x, y
∗) is independent of x when

x is so restricted. We conclude that y∗ ∈ core(P). This proves the inclusion “⊇” of (86).
To prove the other inclusion, assume, as we may, that y0 = 0 and that the yi forms an orthonormal

system. Consider a point y∗ ∈ core(P). Determine P ∈ P such that y∗ ∈ P . By Theorem 5, y∗ is the
bi-optimal strategy of γ(P ; y0). Let ci; i = 1, · · · , n denote the common values of 〈x, yi〉 for x ∈ P .
Then x∗ =

∑
ciyi is the orthogonal projection of y0 = 0 on P , hence y∗ = x∗. This argument shows

that the core is contained in the subspace generated by the yi. This is the result we want as we assumed
that y0 = 0.

In order to determine the projection of y0 on a specific preparation P = Py(h) ∈ P, we simply
intersect core(P) with P . If you do this analytically, one may avoid trivial cases and assume that yi −
y0; i = 1, · · · , n are linearly independent. In Figure 3 we have illustrated the situation in the simple case
when n = 1.

19. Maximum Entropy Problems

Terminology and results of e.g. Sections 7, 10 and 13, are evidently inspired by maximum entropy
problems of classical information theory. We shall now see how these problems can be handled as
applications of the abstract theory. The problems concern inference of probability distributions over
some finite or countably infinite alphabet A, typically with preparations given in terms of certain
constraints, typically “moment constraints”. We shall leave it to the interested reader to go through
specific examples in detail. Examples are numerous, from information theory proper, from statistics,
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from statistical physics or elsewhere. The variety of possibilities may be grasped from the collection
of examples in Kapur’s monograph [76]. The abstract results developed in Part I can favourably be
applied to all such examples. This then has a unifying effect. However, for many concrete examples, the
main work consists in actually verifying the validity of concrete instances of Nash’s inequality (29) or of
appropriate calculations related to robustness and core, cf. Theorems 5 and 6.

As state space and belief reservoir we may take X = Y = M1
+(A), the set of probability distributions

over A. Modelling can then be based on the information triple (Φ,H,D) given by Kerridge inaccuracy,
Shannon entropy and Kullback-Leibler divergence:

Φ(P,Q) =
∑
a∈A

P (a) ln
1

Q(a)
(87)

H(P ) =
∑
a∈A

P (a) ln
1

P (a)
(88)

d(P,Q) =
∑
a∈A

P (a) ln
P (a)

Q(a)
. (89)

However, we find it more illuminating to introduce the action space Ŷ = K(A) consisting of all code
length sequences κ, in short codes, which are functions κ : A 7→ [0,∞] satisfying Kraft’s equality∑

a∈A
exp(−κ(a)) = 1 . (90)

As response we take the bijection Q 7→ Q̂ from Y to Ŷ given by

Q̂(a) = ln
1

Q(a)
; a ∈ A . (91)

The interpretation of code length sequences is well known from information theory. We have merely
replaced binary logarithms with natural ones and allowed values which are not necessarily integers. The
information triple to work with in the Ŷ -domain is (Φ̂,H, D̂) given by

Φ̂(P, κ) =
∑
a∈A

P (a)κ(a) (92)

H(P ) =
∑
a∈A

P (a) ln
1

P (a)
(93)

D̂(P, κ) =
∑
a∈A

P (a)(κ(a)− P̂ (a)) . (94)

Standard results from information theory, cf. also Section 17, show that (Φ,H,D) and (Φ̂,H, D̂) are
genuine information triples and the machinery of the abstract theory applies.

Various extra elements of the modelling may be introduced. For instance one may take the
deterministic distributions as belief instances of certainty. And control κ � P could mean that the
implication κ(a) = ∞ ⇒ P (a) = 0 holds. Then visibility Q � P amounts to absolute continuity of
P with respect to Q. Note that though discrete alphabets with more than enumerably many elements
in principle could be considered, that would contradict the sensible requirement (3). Another variation
will be to allow Observer to choose also incomplete distributions (with point masses summing up to a
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number less than one). From an interpretation point of view this is perfectly sensible and may at times
be technically convenient.

Let us also illuminate the role of the feasible preparations. Thinking of states P as determining the
distribution of a random element ξ over A, it is often desirable to consider preparations corresponding to
the prescription of one or more mean values of ξ. A typical preparation consists of all P ∈ X such that∑

a∈A
P (a)λ(a) = c (95)

with c a given constant and λ = (λ(a))a∈A a given function. This is a strict feasible preparation if and
only if the partition function (a special Dirichlet series),

Z(β) =
∑
a∈A

exp(−βλ(a)) (96)

has a finite abscissa of convergence, i.e. converges for some finite constant β, cf. [25] (or monographs
on Dirichlet series). However, for the most important part to us, the “if”-part, this is clear. Indeed, if the
condition is fulfilled, there exist constants α0 and β0 such that the function κ0 given for a ∈ A by

κ0(a) = α0 + β0λ(a) (97)

defines a code. Then P = Pκ0(k) for some constant k, hence it is a strict feasible preparation of genus
1. It is a member of the preparation family P = Pκ0 . Consider, for any β with Z(β) < ∞, the code κβ
given for a ∈ A by

κβ(a) = lnZ(β) + βλ(a) . (98)

Then this code is a member of corê (Pκ0) as is easily seen. In fact all members of the core are of this
form (fact not proved here). If we can adjust the parameter β such that the corresponding distribution Pβ
given by

Pβ(a) =
exp(−βλ(a))

Z(β)
for a ∈ A (99)

is a member of the original preparation P , this must be the maximum entropy distribution of P , as
follows from Theorem 6 (translated to the Ŷ -domain).

Schematically: In searching for the MaxEnt distribution of a given preparation, first identify the
preparation as a feasible preparation (of genus 1 or higher), calculate if possible the appropriate partition
function and adjust parameters to fit the original constraint(s). This gives you the MaxEnt distribution
searched for. If calculations are prohibitive, you may use numerical and/or graphical methods instead.

The literature very often solves MaxEnt-problems of the type considerd by the introduction of
Lagrange multipliers. As shown, this is not necessary. The approach building on the abstract theory of
Part I appears preferable. For one thing, the fact that you obtain a maximum for the entropy function (and
not just a stationary point) is automatic – it is all hidden in the fundamental inequality. And, for another,
the quantities you work with when appealing to the abstract theory, have natural interpretations. The
Lagrange multipliers in the standard approach, especially within statistical physics, are of significance.
However, they also come up as natural quantities to consider if you tackle MaxEnt-problems as here
suggested.
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20. Determining D-projections

The setting is basicly the same as in the previous section, especially we again consider a preparation
P given by (95). The problem we shall consider is how to update a given prior Q0 ∈ M1

+(A). Then,
the triple (Φ,H,D) given by (87), (88) and (89) is no longer relevant but should be replaced by the triple
(U|Q0 ,D

Q0 ,D) as defined in Section 8, cf. (13). This makes good sense if DQ0 is finite on P . The update
we seek is the D-projection of Q0 on P as defined in Section 11 in connection with (39).

We shall apply much the same strategy as in the previous section. However, we choose not to
introduce response and an action space in this setting 16. Instead, we work directly in the Y -domain
and seek a representation of P as a primitive strict preparation, now to be understood with respect to
U|Q0 . Analyzing what this amounts to, we find that if the partition function, now defined by

Z(β) =
∑
a∈A

Q0(a) exp(−βλ(a) , (100)

converges for some β < ∞, a representation as required is indeed possible. Assuming that this is the
case we realize that for each β with Z(β) <∞, the distribution Qβ defined by

Qβ(a) =
Q0(a) exp(−βλ(a))

Z(β)
for a ∈ A (101)

is a member of the core of P . Then it is a matter of adjusting β such that Qβ is consistent, and we have
found the sought update.

The cancellation that takes place from (12) to (13) allows an extension of the discussion of updating
from the discrete setting to general measurable spaces. Indeed, as is well known, cf. also Section 17,
the definition of Kullback-Leibler divergence makes good sense in the general case. Thus updating and
strategies for the calculation of D-projections as presented above in the discrete case extends without
difficulty to the general case. For instance, one may consider instead of A, a general measurable space
provided with a σ-finite reference measure µ and then work with distributions that have densities with
respect to µ. If the prior has density q0, the partition function should be Z(β) =

∫
exp(−βλ)q0dµ.

Further details and consideration of concrete examples are left to the interested reader.

21. Tsallis worlds

We turn to a study of worlds defined by probabilistic considerations. Only discrete probabilities will
be considered. The main result, Theorem 10 was presented in a different form in [35] and, less formally,
in [34]. Proofs were only indicated in these sources. 17

The key point is that so far our introduction of entropy measures of information theory in Section
17 was dictated by a seemingly arbitrary consideration of various Bregman generators, the hq’s. This

16 this can be done with controls consisting of code improvements which are code length functions measured relative to the
code κ0 associated with Q0 but is less convincing, especially for extensions beyond the discrete case

17 To prevent any misunderstanding, large parts of the material from [35] have been copied or only slightly changed for
the present submission, thereby improving readability and making the manuscript self contained. For an eventual final
publication, this material may be omitted or only included in condensed form.



44

does not in itself give rise to an acceptable interpretation. Of course, we know how to motivate the
introduction of Shannon entropy, most convincingly via coding. But despite some attempts to extend
this to the more general entropy measures, cf. [77], [78] and references there as well as [79], this has not
yet been really successful. And it appears that the supporters of the new entropy measures had no and
still has no convincing interpretation.

The interpretation offered here points to rules of interaction for the physical world around us as a
possible key. It appears especially appealing for 0 < q ≤ 1. However, general acceptance among
researchers of statistical physics must be based on physical evidence. The mathematical evidence
provided here is only indicative that perhaps there is some physical explanation out there.

By A we denote a discrete set, the alphabet, of basic events. The events are identified by an index,
typically denoted by i. Sensible indexing depends on the concrete application. The semiotic assignment
of indices should facilitate technical handling and catalyze semantic awareness. As we have no concrete
application in mind, we shall not introduce any extra structure related to the choice of indices.

The state space X is taken to be identical to the belief reservoir Y and equal to M1
+(A), the set of

probability distributions over A. Generically, x = (xi)i∈A will denote a state and y = (yi)i∈A a belief
instance. Thus x and y are characterized by their point probabilities. As set of certain belief instances
we take the subset Ydet ⊆ M1

+(A) of deterministic distributions. A knowledge instance z = (zi)i∈A will
be a sequence of real numbers over A, not necessarily a probability distribution. The interpretation of zi
is as the weight with which the basic event indexed by i will be presented to Observer. We do not need
the action space and the response function in this section.

Visibility y � x means that x is absolutely continuous w.r.t. y or, expressed differently, that the
support of x – the set of i with xi > 0 – is contained in the support of y.

The interaction between x, y and z is given by an interactor Π, cf. Section 5. We assume that Π acts
locally, i.e. that there exists a function π, the local interactor, defined on [0, 1] × [0, 1] such that, when
z = Π(x, y), zi = π(xi, yi) for all i ∈ A. The world defined this way is denoted Ωπ. From now on, we
talk about the interactor when we in fact mean the local interactor.

The interactor is sound if π(s, s) = s for every s ∈ [0, 1]. All interactors we will deal with will
be sound. Regarding regularity conditions, we assume that π is finite on [0, 1]×]0, 1], continuous on
[0, 1]×[0, 1]\{(0, 0)} and continuously differentiable on ]0, 1[×]0, 1[. The interactor is weakly consistent
if
∑

i∈A zi = 1 whenever x and y � x are probability distributions over A and z = Π(x, y). If we can
even conclude that z is a probability distribution, π is strongly consistent. For q ∈ R, the interactor πq is
given by

πq(s, t) = qs+ (1− q)t for (s, t) ∈ [0, 1]× [0, 1] . (102)

These interactors are weekly consistent and, for 0 ≤ q ≤ 1, even strongly consistent. The corresponding
worlds are denoted Ωq. This is consistent with the notation introduced in Section 5.

From the essential condition that interaction takes place locally and an added condition of weak
consistency, we are left with the worlds Ωq:

Lemma 2. Consider a world Ωπ with atomic situations as described above, involving discrete probability
distributions over the alphabet A. Assume that A is countably infinite and that π is weekly consistent.
Then π = πq with q = π(1, 0). In particular, the interactor is sound.
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Proof. By weak consistency, π(s, t) + π(1 − s, 1 − t) = 1 for all (s, t) ∈ [0, 1] × [0, 1]. In particular,
π is finite valued. Also, π(0, 1) = 1 − q. Consider (x0, y0) = (0, 1) and (xi, yi) = ( 1

n
, 0) for i =

1, · · · , n and apply weak consistency. We find that π( 1
n
, 0) = q 1

n
. Then consider as (xi, yi) the vectors

(0, 1), ( 1
n
, 0), · · · , ( 1

n
, 0), ( p

n
, 0). Using what we already know, and again appealing to weak consistency,

we conclude that π(s, 0) = qs for all rational s. By continuity, this formula holds for all s ∈ [0, 1]. From
the first step of the proof, π(0, t) = (1 − q)t. Finally, π = πq follows by weak consistency applied to
(s, t), (1− s, 0), (0, 1− t).

We shall search for proper effort functions for the worlds Ωπ. For this we introduce a (local) descriptor
as any continuous function κ : [0, 1] → [0,∞] which is finite, strictly decreasing and continuously
differentiable on ]0, 1], vanishes at t = 1 and which satisfies the following condition of normalization:

κ′(1) = −1 . (103)

Note that this definition does not depend on π.
The description effort generated by π and κ is the function defined for atomic situations by

Φπ(x, y|κ) =
∑
i∈A

π(xi, yi)κ(yi) . (104)

Some comments on the interpretations are in order. For t ∈ [0, 1], κ(t) is the effort, when using the
descriptor κ, which Observer must allocate to any basic event which he believes has probability t. This
effort has to be multiplied with the force with which the basic event in question is presented to Observer.
Accumulating the local contributions π(xi, yi)κ(yi), you obtain the description effort as given by (104).

The condition κ(1) = 0 reflects the fact that if you feel certain that a basic event will occur, there
is no reason why you should allocate any effort at all to such an event. Also, it is to be expected that
an event with low probability is more difficult to describe than one with high probability, therefore, we
may just as well assume from the outset that κ is decreasing. The condition (103) is a condition of
normalization which allows one to compare entropy, divergence and other quantities corresponding to
different descriptors and even across different worlds. The unit defined by this condition we call the
natural information unit, the “nat”.

The reader may wish to note that if only π is sound, description effort vanishes for any atomic situation
of certainty.

Denote by δπκ the function on [0, 1]× [0, 1] given by the expression

δπ,κ(s, t) =
(
π(s, t)κ(t) + t

)
−
(
π(s, s)κ(s) + s

)
. (105)

We say that δπ,κ satisfies the pointwise fundamental inequality if, for every (s, t) ∈ [0, 1] × [0, 1],
δπ,κ(s, t) ≥ 0 with equality only if t = s.

Lemma 3. If the pointwise fundamental inequality holds for δπ,κ, the effort function Φπ(·, ·|κ) is proper.

Proof. For every (x, y) with y � x,

Φπ(x, y|κ) + 1 =
∑(

π(xi, yi)κ(yi) + yi
)

≥
∑(

π(xi, xi)κ(xi) + xi
)

= Φπ(x, x|κ) + 1 ,
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The result follows.

Incidentally, we note that by replacing the first equality above with an inequality (“≥”) we can expand
the setting by allowing incomplete probability distributions for belief instances.

Lemma 4. Assume that the alphabet A has at least three elements. Let π be a local interactor and
denote by χ the function on ]0, 1[ defined by

.χ(t) =
∂π

∂t
(t, t) . (106)

Under the assumption that χ is bounded in the vicinity of t = 1, there can only exist one descriptor κ
such that description effort given by (104) defines a proper effort function. Indeed, κ must be the unique
solution in ]0, 1[ to the differential equation

χ(t)κ(t) + tκ′(t) = −1 (107)

for which κ(1) = limt→1 κ(t) = 0.

Proof. Assume that κ exists with Φπ(·, ·|κ) proper. For 0 < t < 1 put

f(t) = χ(t)κ(t) + tκ′(t) .

Consider a, for the time, fixed probability vector x = (x1, x2, x3) with positive point probabilities. Then
the function F given by

F (y) = F (y1, y2, y3) =
3∑
1

π(xi, yi)κ(yi)

on ]0, 1[×]0, 1[×]0, 1[ assumes its minimal value for the interior point y = x when restricted to
probability distributions. As standard regularity conditions are fulfilled, there exists a Lagrange
multiplier λ such that

∂

∂yi

(
F (y)− λ

3∑
1

yi
)

= 0 for i = 1, 2, 3

when y = x. This shows that f(x1) = f(x2) = f(x3).
Using this with (x1, x2, x3) = (1

2
, x, 1

2
−x) for a value of x in ]0, 1

2
[, we conclude that f is constant on

]0, 1
2
]. Then consider a value x ∈]1

2
, 1[ and the probability vector (x, 1

2
(1 − x), 1

2
(1 − x)) and conclude

from the first part of the proof that f(x) = f(1
2
(1 − x)). As 0 < 1

2
(1 − x) < 1

2
, we conclude that

f(x) = f(1
2
)). Thus f is constant on ]0, 1[. By letting t → 1 in (107) and appealing to the technical

boundedness assumption, we conclude that the value of the constant is −1.

We can now formulate the main theorem on the worlds Ωπ pertaining to situations involving discrete
probability distributions. Motivated by Lemma 2 we find it justified only to study the worlds Ωq

18.

18 there may, however, be interesting worlds to study if we restrict attention only to distributions over a two-element set.
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Theorem 10. If q ≤ 0, there is no descriptor which, together with πq, generates a proper effort function.
If q > 0 there exists a unique descriptor κq such that πq and κq generates a proper effort function.

This descriptor is given by

κq(s) = lnq
1

s
(108)

and the information triple determined by the generated effort function is the Tsallis triple (Φq,Hq,Dq).
The function δ = δπq ,κq from (105) satisfies the pointwise fundamental inequality and is identical to the
pointwise divergence function dq from (78).

Proof. By Lemma 4 we see that κq given by (108) is the only descriptor which, together with πq, could
possibly generate a proper effort function. For q < 0, this is not the case as the reader can easily verify
by considering atomic situations with x = (1− ε, ε) and y = (1

2
, 1

2
) and letting ε tend to 0.

For q > 0 one finds that πq and κq generate the previously studied proper effort function Φq obtained
by integration of φq from (76). A simple calculation shows that δ from (105) is identical to the atomic
divergence function dq from (78) which is known to satisfy the pointwise fundamental inequality.

We note that for the degenerate case q = 0, a black hole, Φ0(x, y) = H0(x) = n−1 with n the size of
the number of basic events in the support of x. As noted before, divergence vanishes identically in this
case.

Thinking more over the reasoning which led to the main result, we realize, from the proof of Lemma
3, that perhaps the definition (104) is not the most natural one. It appears sensible to replace it by the
definition of gross description effort given by (dropping π and κ from the notation in (104))

Φ̃(x, y) =
∑
i∈A

(
π(xi, yi)κ(yi) + yi

)
. (109)

Similarly, gross entropy is defined by

H̃(x) =
∑
i∈A

(
xiκ(xi) + xi

)
. (110)

The added terms are interpreted as an overhead related to the handling of the event with index i, and
this term is proportional to the believed point probability, either yi in (109) or xi in (110). According
to a frequential interpretation, these added terms are thus proportional to the occurrence of the event in
question. The total added overhead in an atomic situation (x, y) is

∑
yi = 1 and in an atomic situation

(x, x) it is also
∑

i xi = 1. If we allow incomplete distributions as belief instances, the overhead be
less than 1 in the first case, as is only natural. We may say that the normalization (103) corresponds to
choosing the overhead cost as the unit to work with. This makes good sense in the Shannon world since,
apart from the necessary adjustment from nats to bits, the overhead in that case corresponds to taking the
cost of having access to a binary memory cell as the basic unit.

Note that gross entropy is always bounded below by the overhead cost, 1 nat.

We have noted that the descriptor is uniquely determined from the interactor. Therefore, in principle,
only the interactor needs to be known. Examples will show that quite different interactors may well
determine the same descriptor. Thus, knowing only the descriptor, you cannot know which world you
operate in, in particular, you cannot determine divergence or description effort. But you can determine
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the entropy function. This emphasizes again the general thesis, that entropy should never be considered
alone. Experience says that even when entropy can be considered by itself in interesting connections
full understanding and easy technical handling is always accomplished by introducing further basic
quantities, typically description effort.

It is instructive to consider the family (κq)0≤q<∞ of descriptors. This is a descending family of
decreasing functions on [0, 1]. The largest descriptor, κ0(x) = 1

x
− 1, is associated with a black hole.

For 0 ≤ q ≤ 1, the descriptors are convex and assume the value∞ for x = 0. For q = 1, we find the
descriptor κ1(x) = ln 1

x
associated with the classical world. Then, for 1 < q < 2 the descriptors are

convex and finite valued, also for x = 0. The special descriptor κ2(x) = 1− x is affine. For 2 < q <∞
we find descriptors which are concave with κ′q(0) = 0. The zero function is not a descriptor covered by
Theorem 1. It may be conceived as a limiting case corresponding to q = ∞. A world corresponding to
this value of q would lead to situations with no outstanding issues, a world of wisdom (paradise or hell
according to personal taste).

22. conclusions

An abstract theory of basic elements of cognition is initiated with an emphasiz on interpretations.
Justification of the theory lies both in the philosophically motivated considerations per se and in the
wide range of applications.
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