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My ambition:

- to present a quantitative theory of ognition, involving

elements suh asTRUTH, BELIEF,

KNOWLEDGE, CONTROL, · · ·
whih is abstrat (e.g. non-probabilisti), inspired by

INFORMATION THEORY and

GAME THEORY, building largely on

NATURAL INTERPRETATIONS

(well, and some speulative onsiderations!) and with

WIDE APPLICATIONS of interest to the

�onvexity ommunity�, to information theorists, to

statistiians etetera!
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The world (Ω), Nature and Observer, situations

NATURE: holder of truth! X state spae with elements x ,

truth instanes or states. A preparation is a subset P ⊆ X .

OBSERVER: is onerned about truth but restrited to:

belief, ation and ontrol! Ation and ontrol will here be

identi�ed and derived from belief: �belief is a tendeny to at�

(Good 1952). To model these thoughts, introdue:

• Y belief reservoir. Y ⊇ X . Elements y are belief instanes.

• Ŷ ation spae or ontrol spae. You may think of w ∈ Ŷ

either as an ation or as a ontrol.

• A map, y 7→ ŷ , response maps Y into Ŷ .

Atomi situations: Either ertain pairs (x , y) (�Y -domain�)

or ertain pairs (x ,w) (�Ŷ -domain�). Notation:

y ≻ x (x is visible from y) or w ≻ x (x is ontrolled by

w)· · ·
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Interation, knowledge, e�ort

Truth and belief interat and lead to knowledge: z = Π(x , y)
or, in the Ŷ -domain, z = Π̂(x ,w). Note: Π(x , y) = Π̂(x , ŷ ).
Knowledge instanes z belong to the knowledge base Z .

Interpretation: z represents the way situations from the world

are presented to Observer or how situations are pereived by

Observer. Π or Π̂ is the interator. It haraterizes the world:

Ω = ΩΠ.

Examples: If Z ⊇ Y ⊇ X , onsider the lassial world Ω
1

(�ts in with Shannon theory...) with interator Π
1

(x , y) = x

or a blak hole Ω
0

with interator Π
0

(x , y) = y (or mixtures

if Z is an a�ne spae, �ts in with Tsallis theory...).
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Pereption requires e�ort!

An e�ort funtionmaps atomi situations, (x , y) or (x ,w),
into ]−∞,∞]. Convenient to allow negative values as it

enables an easy swith from e�ort- to utility-based onepts

by a hange of sign. Preise de�nitions · · ·
Φ̂ e�ort funtion: ∀w ≻ x : Φ̂(x ,w) ≥ Φ̂(x , x̂).
Φ̂ proper: �=� only if w = x̂ (w adapted to x) or rhs=∞.

Φ e�ort funtion: ∀y ≻ x : Φ(x , y) ≥ Φ(x , x).
Φ proper: �=� only if y = x (perfet math) or rhs=∞.

If response is injetive, Φ(x , y) = Φ̂(x , ŷ ).

Choie among salarly equivalent e�ort funtions amounts to

hoie of unit. In a world Ω = ΩΠ there may, modulo

equivalene, only be one hoie of a proper e�ort funtion.

This applies to Shannon and to Tsallis theory.

Similar de�nitions for utility-based onepts: Û (U) is ... i�

Φ̂ = −U (Φ = −U) is so.
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Entropy, redundany, divergene, inf. triples

Φ̂ proper e�.ft., Φ the derived e�.ft. View Φ̂(x ,w) /Φ(x , y)
as information ontent of �x� in situation (x ,w) /(x , y).

Entropy is minimal e�ort, given x (or guaranteed information

or neessary alloation of e�ort): H(x) = Φ̂(x , x̂) = Φ(x , x).

Redundany is redundant e�ort: D̂(x ,w) = Φ̂(x ,w) − H(x).
Rewritten: Φ̂(x ,w) = H(x) + D̂(x ,w) (linking identity).

Further: D̂(x ,w) ≥ 0, �=� i� w = x̂ (fundamental

inequality). But: di�ulty with H = ∞! Therefore de�ne:

Information triple (Ŷ -domain): a triple (Φ̂,H, D̂) s.t. linking

identity and fundamental inequality hold. For the Y -domain,

(Φ,H,D), we require linking (Φ = H+D) and fundamental

inequality (D(x , y) ≥ 0, �=� i� y = x). D is divergene.

Utility-based inf. trpl.: (Û,M, D̂) s.t. (−Û,−M, D̂) is e�ort-
based trpl. Similarly, (U,M,D) in Y -domain. M: max utility.
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Relativization, Updating

Given information triple (Φ,H,D). Consider prior y
0

hosen

by Observer who seeks an update with posterior y .

Updating gain de�ned by

U|y
0

(x , y) = Φ(x , y
0

)− Φ(x , y) = D(x , y
0

)− D(x , y).
(Latter expression preferable!).

Assume that the marginal D

y
0

is �nite on some preparation

P. Then (U|y
0

,Dy
0 ,D) is a utility-based inf. trpl. on

P ⊗ Y = {(x , y)|y ≻ x , x ∈ P}. Note: Φ not needed;

onstrution makes sense based only on a general divergene

funtion D.
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Control determines what an be known!

Feasible preparations are determined from Φ̂ (or from Φ): A
feasible preparation is a �nite intersetion of primitive

preparations , and these fall in two types, either strit or slak.

Notation and de�nitions for the primitive preparations are:

Pw (h) = {Φ̂w = h} = {x |Φ̂(x ,w) = h} ;

Pw (h↓) = {Φ̂w ≤ h} = {x |Φ̂(x ,w) ≤ h} .

The number h is the level, respetively maximum level of the

preparation in question (assuming Pw (h) 6= ∅).
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Games assoiated w. (Φ̂,H, D̂) or (Φ,H,D)

P a preparation. Game γ̂(P) = γ̂(P|Φ̂): Φ̂ objetive

funtion, Nature maximizer hooses x ∈ P, Observer

minimizer hooses w ≻ P. Values for Nature, resp. for

Observer are:

supx∈P infw≻x Φ̂(x ,w) = supx∈P H(x) = H

max

(P)

infw≻P supx∈P Φ̂(x ,w) = infw≻P R̂i(w |P) = R̂i

min

(P).

Ri stands for risk. Optimal strategies: for Nature, x∗ ∈ P s.t.

H(x∗) = H

max

(P); for Observer, w ≻ P s.t.

R̂i(w |P) = R̂i

min

(P).

If �=� holds in minimax inequality H

max

(P) ≤ R̂i

min

(P) and
ommon value is �nite, the game is in equilibrium.

Similar notions apply to the game γ(P) for the Y -region.
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Basi results for γ̂ and γ

[Basis℄ If one of the games γ̂(P) and γ(P) is in equilibrium

and has optimal strategies for both players, so does the other -

and if so, optimal strategies are unique and �agree�, i.e. if they

are (x∗,w∗) and (x∗∗, y∗), then x∗∗ = y∗ = x∗ and w∗ = x̂∗.

[x∗ is the bi-optimal strategy. It satis�es: x∗ ≻ P, x∗ ∈ P,

notationally, x∗ ∈ tr(P), the entre of P. ]

[Identi�ation℄ With x∗ ∈ P and w∗ ≻ P, γ̂(P) is in equi-

librium with x∗ as bi-optimal strategy if and only if the Nash

inequalities hold. If x∗ ∈ tr(P) and w∗ = x̂∗ is already known,

it is enough to hek one of these: ∀x ∈ P : Φ̂(x ,w∗) ≤ H(x∗).
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... and more, key results

[Properties℄When onditions hold, the diret as well as the dual

Pythagorean inequalities hold:

∀x ∈ P : H(x) + D̂(x ,w∗) ≤ H(x∗) ,
∀w ≻ P : R̂i(w∗|P) + D̂(x∗,w) ≤ R̂i(w |P) .

In partiular, x∗ is the MaxEnt-attrator , i.e. xn
D

→ x∗

(D(xn, x
∗) → 0) for any (xn) in P with H(xn) → H

max

(P).

[Robustness, ore℄ Let (x∗,w∗) be strategies for γ̂(P) with

w∗ = x̂∗. If w∗
is robust at the level of robustness h, i.e.

if Φ̂(x ,w∗) = h for all x ∈ P and h is �nite, then γ̂(P) is

in equilibrium with h as value and with x∗ as the bi-optimal

strategy. Further, the Pythagorean equality holds:

∀x ∈ P : H(x) + D̂(x ,w∗) = H

max

(P).

The results have natural ounterparts for the game γ(P).
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updating, given a prior

Analogous results hold for utility-based information triples.

Here, we only fous on updating in the Y -domain.

The setting is a general divergene funtion D (note, not

neessarily derived from an e�ort-funtion), a preparation P
and a prior y

0

∈ Y with D

y
0 < ∞ on P. The assoiated

updating triple is (U|y
0

,Dy
0 ,D). An optimal strategy for

Nature is here alled a D-projetion of y
0

on P.

If x∗ ∈ tr(P), the game is in equilibrium with x∗ as bi-optimal

state i� the Pythagorean inequality for updating,

D(x , y
0

) ≥ D(x , x∗) + D(x∗, y
0

)
holds for every x ∈ P.
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where does onvexity ome in?

Given information triple (Φ,H,D) in Y -domain. Add

assumptions:

• X is a onvex topologial spae,

• all �views� ]y [= {x |y ≻ x} are onvex,

• y ≻ x with x a onvex ombination x =
∑

αixi i� y ≻ xi
for all i with αi > 0 (�if� su�es for some appliations)

• all marginals Φy
are a�ne;

• suitable (!) semi-ontinuity assumptions.

For every onvex ombination x =
∑

αixi

H

(

∑

αixi

)

=
∑

αi H(xi ) +
∑

αi D(xi , x) and, if H(x) < ∞,

then, for every y ∈ Y , the ompensation identity holds:

∑

αi D(xi , y) = D

(

∑

αixi , y
)

+
∑

αi D(xi , x) .
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... ontinued

The ondition ∀x ∈ P : Φ(x , y∗) ≤ H(x∗) is entral! From it,

and from x∗ ∈ P, you onlude equilibrium of γ(P) and
bi-optimality of x∗. In partiular, H(x∗) = H

max

(P).

With onvexity assumptions, H(x∗) = H

max

(P) atually su�es

for these onlusions!

Further elaborations for updating games with onvex

preparations as well as analytial existene results, exploiting

onvexity- and topologial assumptions, an be established.
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Other interpretations

Appliations to Shannon theory is obvious! But a hange of

interpretation opens for other appliations. Three indiations:

• Utility an be handled via a simple hange of sign as

already disussed;

• What if Nature an ommuniate? Then we speak of

Expert and Observer beomes Customer. Customer asks for

advie but for despiable reasons Expert may give advie

against better knowing. How to keep the expert honest? Via

a paying sheme based on a proper e�ort funtion! In fat

lassial (Brier, 1950 on weather foreasting,...);

• Think of states as auses, and response as the

transformation into assoiated onsequenes. This results in

models of ause and e�et. An example is problems of

apaity in information theory. Then onsiderations of risk

beome important (Kuhn-Tuker theorems of inf. theory...).
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Atomi triples, Bregman onstrution

Y = X , a subinterval of ]−∞,∞[, x̂ = x . An information

triple (φ, h, d) in this simple setting is an atomi information

triple over I . The important a�nity property holds

automatially by a Bregman onstrution based on a smooth

onave entropy funtion h. Indeed, then

φ(s, u) = h(u) + (s − u) h′(u):

ϕ(s, u)

s
0

u s s
1

h(s)

d(s, u)
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... large potential...

• generator need not be smooth; this points to the good sense

of extended modelling, allowing response to be set-valued;

• a natural proess of integration preserves key properties;

• ontrols may be de�ned by (sub)regions orresponding to

straight lines. This points to basi a�ne properties of the

measuring proess. Duality theory appears as a natural

appliation (not worked out);

• is a representation theorem possible?
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Integration of atomi triples

Integration of (φ, h, d) over set T = (T , µ). Let X = Y be

�appopriate� funtion spae of (measurable) funtions

x : T 7→ I for whih
∫

T
h(x(t))dµ(t) onverges. De�ne

(Φ,H,D) by integration, i.e.

Φ(x , y) =

∫

T

φ(x(t), y(t))dµ(t) ,

H(x) =

∫

T

h(x(t))dµ(t)

D(x , y) =

∫

T

d(x(t), y(t))dµ(t) .

The basi fats, d(s, u) ≥ 0 with equality i� u = s is the

pointwise fundamental inequality. Examples: next slide...
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Two examples

1.st example: Take h(s) = −s2 on ]−∞,∞[ as generator.
Then d(s, u) = (s − u)2 and by suitable integration with L2

(or l2) as funtionspae, you enter into Hilbert spae theory

with D(x , y) = ‖x − y‖2 ...

2.nd example: Take h(s) = s ln 1

s
on [0, 1] (or...). Then

d(s, u) = u − s + s ln s
u
. With disrete probability

distributions (w.r.t. ounting measure) as funtion spae, you

enter disrete Shannon theory. With more general integration,

ontinuous information theory with versions of

Kullbak-Leibler divergene are obtained.

Updating games in �rst example leads to standard results of

projetion and the onnetion to lassial Pythagorean

theorems. Updating for the seond example leads to

information projetions and to the Pythagorean theorems of

information theory.
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indiation of further appliations

Apart from information theoretial appliations, we an point

to ertain problems of loation theory, espeially Sylvesters

problem, to appliation in statistial physis (explanation of

Tsallis entropy ...), appliations to statistis, espeially to

exponential families ...
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Conluding remarks

• Key points: A quantitative and abstrat theory of

ognition.

• A main feature: Interpretations guide the way!

• Tehnial advantage: Conrete optimization problems are,

typially, handled by the robustness theorem. This is in

ontrast to the most ommon approahes to optimization,

where a tehnique based on Lagrange multipliers play the

main role.

• Challenges: Consolidate! (more appliations, more

theoretial results, e.g. on the ore and the onnetion to

exponential families, expansion of the setting, e.g. an

quantum information theory be overed?...)

Thank you for going through this appetizer!
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