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Abstract 

Forest fires pose a serious threat to the environment with the potential of causing ecolog-

ical harm, financial losses, and human casualties. While research suggests that climate 

change will increase the frequency and severity of these fires, recent developments in deep 

learning and convolutional neural networks (CNN) have greatly enhanced fire detection 

techniques and capability. These models can be leveraged by unmanned aerial vehicles 

(UAVs) to automatically monitor burning areas. However, drones can carry only limited 

computational and power resources, therefore on-board computing capabilities are con-

strained by hardware limitations. This work focuses on the design of segmentation mod-

els to identify and localize active burning areas from aerial RGB images processed on lim-

ited computing resources. To achieve this goal, the research compares the performance of 

different variants of the DeepLabv3 neural network model for fire segmentation when 

trained and tested with the FLAME dataset using a k-fold cross validation approach. Ex-

perimental results are compared with U-Net, a benchmark model used with the FLAME 

dataset, by implementing this model in the same codebase as the DeepLabv3 model. This 

work demonstrates that a refined version of DeepLabv3, with a MobileNetv2 backbone 

using pretrained layers and a simplified atrous spatial pyramid pooling (ASPP) module, 

yields a similar performance to U-Net with a precision of 87.8% and a recall of 83.2% while 

only requiring 20% of the number of parameters involved with the U-Net topology. This 

significantly reduces memory and power consumption, enabling longer UAV flight dura-

tion and reducing the processing overhead associated with sensor input, making it more 

suitable for deployment on unmanned aerial vehicles. The model’s compact architecture 

implemented using TensorFlow and Keras for model design and training, along with 

OpenCV for image preprocessing, makes it portable and easy to integrate with edge de-

vices such as NVIDIA Jetson boards. 

Keywords: image segmentation; aerial image processing; deep learning; forest fire  

detection 

 

1. Introduction 

Forest fires pose a serious threat to the environment with the potential of causing 

harm to biodiversity, soil erosion, and air pollution, as well as result in human casualties 

[1]. In recent years, climate change has made the issue worse with research suggesting 
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that forest fires will increase in frequency and severity [2]. They can also have a negative 

impact on the economy by endangering local businesses, tourism, and agriculture, leading 

to financial losses. According to the National Interagency Fire Center (NIFC), forest fires 

have burned on average 4,287,522 acres annually over the past ten years [3], and annually 

costing $3 billion to fight in the US [4]. Similarly, the Canadian National Forestry Database 

(NFD) annually reports over 8000 fires, burning on average over 2.1 million hectares [5]. 

According to Canadian wildland fire management agencies, these fires cost between $800 

million and $1.4 billion annually, and the impact of climate change is expected to drive up 

costs [6]. Forest fires not only pose a threat to those who are caught in the burning area. 

Because they release a lot of smoke they can lead to respiratory illnesses and long-term 

health issues to nearby communities. Moreover, forest fires burn massive amounts of bi-

omass and release significant volumes of carbon monoxide and carbon dioxide into the 

atmosphere, further exacerbating the effects of climate change. 

For these reasons researchers have created early detection techniques to better con-

trol forest fires. Fire detection has historically depended on human observation from look-

out towers, which is subject to human error and limits coverage. Another approach is the 

use of electronic sensors, which have response delays because they need a high concen-

tration of heat or smoke to sound an alarm [7]. Likewise, satellites are used to cover large 

areas, but they also need human monitoring and are prone to data latency. Recent devel-

opments in deep learning and artificial intelligence (AI) have greatly enhanced fire detec-

tion techniques. Convolutional neural networks (CNNs), a type of AI-based computer vi-

sion technique, has had great success in detecting forest fires early on. There are four fun-

damental approaches to applying computer vision techniques to fire detection. Those in-

clude classification, object detection, semantic segmentation, and instance segmentation. 

Image classification aims to find out if an image’s content falls into a particular class. In 

this paper, a classifier model’s function is to determine whether a given image contains 

fire or not. Object detection aims to not only find if an image belongs to a particular cate-

gory but also to locate the burning area using a bounding box. Finally, there is segmenta-

tion, which evolves tracing a pixel-level outline of an object known as a mask. There are 

two types of segmentation: instance segmentation, which distinguish between different 

instances of an object, and semantic segmentation, which is used in this paper to locate 

and identify fire regions at the pixel level. However, semantic segmentation cannot differ-

entiate between separate instances of fire regions. 

This paper explores the development and application of CNN-based methods for 

forest fire monitoring. It begins by reviewing the state-of-the-art in the field of forest fire 

monitoring, including a survey of available datasets and techniques used for fire monitor-

ing, while highlighting their advantages and limitations. Next, we discuss the constraints 

that come with deploying these models on an unmanned aerial vehicle (UAV). Finally, 

we propose and integrate our own deep learning-based approach to fire monitoring. The 

design of this deep learning model explicitly considers that it is intended for implemen-

tation on an embedded system on board an unmanned aerial vehicle with limited compu-

tational and power resources. 

2. State of the Art 

2.1. Image-Based Fire Detection 

This section surveys the literature on computer vision-based forest fire monitoring. 

There has been extensive research conducted on the subject, and many researchers have 

implemented and tested models for tasks such as fire detection, classification, and seg-

mentation. Among detection models considered in the literature, YOLO (You Only Look 

Once) [8] has emerged as a popular choice due to its speed and accuracy. Jiao et al. 
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employed YOLOv3 for wildfire detection [9]. They proposed a lightweight variant to 

YOLOv3, called Tiny-YOLOv3, which is able to process more frames per second, making 

it a good choice for computationally restricted environments such as UAVs. Their model 

was tested on 60 images but they did not specify the dataset utilized. They reported an 

82% precision and 79% recall on their testing set. Recent studies explored newer versions 

of YOLO. Examples include Tahir et al. [10] who implemented YOLOv5 for fire detection. 

They used the FLAME and FireNet datasets to train and test their model. They also pro-

posed a method to reduce the computational cost of their model by integrating CSPNet 

[11] and Darknet [12] into their base YOLOv5 model. Their model resulted in precision 

and recall scores of 97% and 92% respectively, and an F1 score of 94%. Li et al. [13] intro-

duced a fire recognition model based on ShuffleNetv2 called R-ShuffleNetv2 which they 

train and evaluate on the FLAME dataset. Their findings indicate that R-ShuffleNetv2 per-

formed better than ShuffleNetv2, achieving a processing rate of 31 frames per second 

while maintaining an F1 score of 89.09%. Other methods, worth noting even though they 

are not strictly used for fire detection, include that of Chiang et al. [14]. They developed a 

method for dead tree detection, which is crucial in preventing forest fires. Their approach 

used a Mask R-CNN [15] model with transfer learning. A notable element of their ap-

proach is that they used data augmentation to expand their dataset. This approach 

achieved an average precision score of 54% in detecting dead trees from aerial images. 

Sridar et al. [16] employed DenseNet [17] for fire detection. They included images without 

fire to reduce false positives. Their model demonstrated 90% accuracy in classifying im-

ages containing forest fires. Alternatively, segmentation-based models remain relatively 

underexplored in comparison with forest fire detection. This highlights the need for fur-

ther research in segmentation-based models. In this category, the authors of the FLAME 

dataset [18] propose the use of U-Net [19] for fire segmentation with a precision of 92% 

and recall of 84%. A summary of the different models in the literature is presented in Table 

1. 

Table 1. Summary of different models in the literature for forest fire detection or segmentation in-

cluding the dataset that they were tested on and a summary of their performance. 

Model Used Dataset Performance 

Tiny-YOLOv3 [9] Unspecified Precision: 82%, Recall: 79% 

YOLOv5 [10] FLAME + FireNet 
Precision: 97%, Recall: 92%, 

F1 Score 94% 

ShuffleNetv2 [13] FLAME 
Acc: 82.12%, F1 Score: 

85.44%, 34FPS 

R-ShuffleNetv2 [13] FLAME 
Acc: 86.33%, F1 Score: 

89.08%, 31FPS 

U-Net [18] FLAME Precision: 92%, Recall: 84%. 

DenseNet [16] Custom Acc: 90% 

2.2. Unmanned Aerial Vehicles 

Unmanned aerial vehicles (UAV) or drones became popular for the monitoring of 

forest fires because of their ability to swiftly navigate large and dense areas without a 

human pilot involved, which reduces risk to human lives and deployment cost. Many 

different sensors can be mounted on UAVs including RGB cameras, thermal cameras, and 

gas sensors. UAVs are also capable of processing their surroundings in real time. One 

method used to process the data captured by the UAV is by relaying images to a ground 

station and processing the data there. However, the UAV must be connected to a broad-

band network, which might not be available when working in remote areas. Therefore, a 

commonly used alternative has been to execute image processing with onboard edge 
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computing and relaying only the location of detected burning areas. It is important to note 

that UAVs have limited computational and power resources given their size and reliance 

on batteries. This must be considered when designing new computational models. An-

other critical aspect is the type of data used. UAVs can be equipped with RGB cameras 

and thermal cameras, and both can be used for fire detection. However, in this work we 

opted to eliminate thermal images because in real life scenarios heat-emitting objects that 

are not fires may be present and can be perceived as false positives. Moreover, despite the 

fact that fusing RGB and thermal images is likely to improve accuracy, processing more 

complex input image data is taxing the requirements for onboard hardware and energy 

consumption [1]. 

3. Technical Background 

The detection of forest fires leverages techniques from machine learning, most nota-

bly artificial neural networks. Although artificial neural networks come in a variety of 

classes, the main ones used in computer vision are convolutional neural networks (CNN) 

and fully connected neural networks. This section summarizes two neural model archi-

tectures explored in this research. 

3.1. U-Net Architecture 

U-Net, a segmentation-based model, was originally proposed for medical imaging 

applications in [19] but has since been applied in other domains. U-Net is characterized 

by its U-shaped architecture, which consists of an encoder and a decoder, as shown in 

Figure 1. 

 

Figure 1. U-Net architecture. 

By feeding the data through a sequence of down-sampling steps, each comprising 

two convolutional layers, activation layers, and max pooling layers, the encoder is able to 

capture context by progressively decreasing the spatial dimensions while increasing the 

feature map depth. The decoder then uses the features extracted by the encoder to create 

a binary mask with the same resolution as the input image. It does so using a number of 

convolutional and upsampling layers to increase dimension and decrease the feature map 

depth. U-Net also includes skip connections that connect corresponding encoder and de-

coder layers. These skip connections help the model preserve the spatial information lost 

during feature extraction and increase the model’s localization accuracy. U-Net’s capacity 

to integrate fine-grained feature extraction with global context is what makes it a viable 

model for forest fire detection. The model also converges quickly, is lightweight, and is 

simple to adapt to meet the limited processing capability requirements. 
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3.2. DeepLabv3 

DeepLabv3 is a deep learning model for semantic segmentation [20] which proved 

successful in domains like autonomous driving, medical imagery analysis, and notably in 

aerial image analysis. For this reason, DeepLabv3 offers a competitive alternative for wild-

fire detection. A representation of DeepLabv3 is presented in Figure 2. 

 

Figure 2. DeepLabv3 architecture. 

One of the primary innovations of DeepLabv3’s is the use of atrous (or dilated) con-

volutions. Atrous convolution applies convolutional filters at different stride rates and 

enables the model to contextualize information by capturing features at multiple scales, 

improving its ability to recognize objects of different sizes. Given the variety of shapes 

and sizes that fire can take, this is important for the application considered. The Atrous 

Spatial Pyramid Pooling (ASPP) is a module constructed by combining these atrous con-

volutions (each at different rate) to extract features at various scales. The model is able to 

extract both global context and fine details thanks to this multiscale approach. Addition-

ally, DeepLabv3 incorporates residual connections to improve performance and stability 

and a backbone that is utilized to extract features on the encoder path. In this paper, we 

explore the use of ResNet and MobileNet as backbones. In the case of ResNet, which is a 

residual neural network [21] introduced to address the vanishing gradient problem, the 

version of ResNet50 is selected as it allows a fair compromise between size and feature 

extraction capability. Alternatively, MobileNet forms a family of lightweight deep convo-

lutional neural networks [22] designed specifically for embedded computer vision appli-

cations such as computing hardware available on UAVs. The MobileNetV2 version is se-

lected as it provides computational efficiency without compromising accuracy. 

4. Datasets 

The FLAME dataset (Fire Luminosity Airborne-based Machine learning Evaluation) 

[18] contains color and thermal images of burning debris in a pine forest in Observatory 

Mesa, Arizona. Figure 3 shows samples of color images in the top three rows and samples 

of thermal images in the bottom three rows. 



Eng. Proc. 2025, 5, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 3. Sample images from the FLAME dataset [18] with color images in top three rows, and 

thermal images in bottom three rows, encoded in Fusion, WhiteHot and GreenHot palettes. 

No correspondence is provided between the images captured by the RGB camera and 

the thermal camera. The data captured by the RGB image was compiled and manually 

labeled using MATLAB’s Image Labeler for classification and segmentation. There are 

2003 RGB images captured for segmentation at a resolution of 3480 × 2160, and 47,992 

images labeled for classification at a resolution of 254 × 254. The label for segmentation 

consists of a mask indicating whether each pixel contains fire or not. 

In this project the FLAME dataset is used because it provides segmentation labels 

that are particularly useful for applications aimed at locating fire regions. In contrast with 

the detection approach, datasets such as FireNet [23] and the Fire Detection Dataset [24,25], 

segmentation provides a more detailed understanding of the spread of forest fires, and 

enables more detailed monitoring of their progression over time. 

5. Methodology 

5.1. Data Preparation and Computing Resources 

This work focuses on developing segmentation models to identify and localize active 

burning areas from aerial color images. To achieve this, the FLAME dataset is considered. 

Labels are converted from their original three channel format to a single channel (gray-

scale) image where pixels with a value of one indicate regions with fire, and pixels with a 

value of zero indicate regions without fire. A sample of converted image from the dataset 

with corresponding binary mask label is shown in Figure 4. The conversion is performed 

to simplify the output of the model to a single channel, making it compatible with the 

binary cross-entropy loss function considered. 

 

Figure 4. Sample of the dataset with binary label: input RGB image (left) and binary mask (right). 
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To reduce the computational load and to ensure compatibility with the models input 

size, images were resized from their original 1280 × 720 pixels resolution to 256 × 256 pixels. 

This reduction was necessary not to exceed the computational resources imposed by hard-

ware limitations. As a result, a compromise is made on the resolution compared to the 

FLAME dataset paper [18] which originally proposed the implementation of U-Net using 

512 × 512 input images. Experiments are conducted on a Google Colab notebook con-

nected to a hosted runtime (shown in Figure 5). This runtime consists of an NVIDIA T4 

Tensor Core GPU with 15 GB of virtual RAM and 51 GB of system RAM. The dataset is 

stored in Google Drive and imported into the notebook. TensorFlow [26] and Keras [27] 

are used to implement the semantic segmentation models, and OpenCV [28] for image 

preprocessing, including resizing and Scikit-Learn (sklearn) library to implement k-fold 

cross-validation [29]. 

 

Figure 5. End-to-end workflow for semantic segmentation. 

Experiments with the converted FLAME dataset are conducted and performance is 

evaluated with three segmentation models: U-Net, DeepLabv3 with ResNet50 as back-

bone, and DeepLabv3 with MobileNetv2 as backbone. For both U-Net and DeepLabv3, 

we used Adam optimizer [30] with a learning rate of 0.001 for fast and stable convergence. 

We used the binary cross-entropy loss function. We trained our models using a batch size 

of 16 for up to 30 epochs. Early stopping (with a patience of 5 epochs) is implemented to 

prevent overfitting. 

5.2. Fire Detection with U-Net 

U-Net was implemented in [18] with a couple of modifications from its original de-

sign in [19]. To improve performance in small fire regions, Shamsoshoara et al. [18] re-

placed the standard ReLU activation function with the Exponential Linear Unit (ELU) [31], 

which mitigates vanishing gradients and speeds up training. Dropout layers were applied 

to prevent overfitting, and a sigmoid activation function was used in the final layer for 

binary classification. We also modified the input layer of the network which was adapted 

to accept 256 × 256 × 3 RGB images. 

5.3. Fire Detection with DeepLabv3 

Alternative models are built on DeepLabv3, which is selected due to its robust se-

mantic segmentation capabilities and ability to maintain segmentation accuracy over var-

iable fire surface areas. The performance achieved with two different backbones, respec-

tively ResNet50 and MobileNetV2, is compared. ResNet50 is considered for its deep fea-

ture extraction capabilities and its mechanisms to avoid vanishing gradients and increase 

stability, which could be an issue in these experiments because of the limited size of the 
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dataset. And MobileNetV2 for its lightweight design and improved computational effi-

ciency. 

In the case of DeepLabv3 with MobileNetV2 as a backbone, a unique approach is 

proposed to further reduce the number of parameters. It consists of simplifying the atrous 

spatial pyramid pooling by using fewer atrous convolutions. This is motivated by the fact 

that the dimension of the feature map extracted from MobileNetV2 is smaller than that 

extracted from RestNet50, meaning that the features do not need to be extracted at large 

dilation. As a result, with the proposed modification the number of parameters in the seg-

mentation model can be reduced from a total of 933,154 parameters (3.56 MB) to a total of 

401,701 parameters (1.53 MB), while maintaining similar accuracy. This can be seen by 

comparing the ASPP in Figures 6a,b where the ResNet50 example contains five atrous 

convolution layers, including global average pooling, 1 × 1 convolution layer, and three 3 

× 3 convolution layers with a dilation of 6, 12 and 18, while its MobileNetV2 counterpart 

only contains two atrous convolution layers including global average pooling and 1 × 1 

convolution layer. Next, the features extracted by the ASPP are up-sampled and fused 

with lower-level features from the backbone to preserve spatial details. Further convolu-

tional layers upscale the segmentation map, the final output is generated by 1 × 1 convo-

lution layer, producing a pixel-wise prediction of fire regions as seen in Figure 6. Unlike 

ResNet50 and U-Net, MobileNetV2 does not contain any mechanism known to help mit-

igate the vanishing gradient problem and stabilize training. Possible solutions include the 

introduction of skip connections, but to not increase the complexity of the model, we in-

stead freeze a portion of the layers of MobileNetV2 which were initialized with pretrained 

ImageNet weight [32]. This allows it to leverage existing features from ImageNet, stabilize 

training and facilitate backpropagation [33]. 

  

(a) (b) 

Figure 6. DeepLabv3 architecture with two different backbones. The dimensions of the layers are 

indicated along their respective feature maps. (a) The model is composed of a ResNet50 backbone, 

a dilated spatial pyramid pooling composed of five atrous convolution layers and a decoder [34]. 

(b) The model is composed of a MobileNetV2 backbone, a simplified dilated spatial pyramid pool-

ing with only two atrous convolution layers and a decoder. The model is based on [35]. 

5.4. Performance Evaluation 

To ensure reliable performance assessment, we used k-fold cross-validation instead 

of the FLAME dataset paper’s single 85/15% train/testing partition [18]. We applied a 5-

fold split, using 80% of the data for training and 20% for testing in each fold. For each fold 

we evaluated metrics including intersection over union (IoU) for segmentation accuracy, 
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as well as precision, recall, specificity and F1-score for fire detection effectiveness. This 

methodology offers a systematic evaluation of fire segmentation models using the FLAME 

dataset. By comparing U-Net and DeepLabv3 (with two different backbones) in the same 

testing environment, we mitigated the issue related to the variability introduced when 

models are evaluated across different codebases. 

6. Experimental Evaluation 

All three models demonstrated strong performance on the FLAME dataset. A sum-

mary of the experimental results with each of the segmentation models considered for 

comparison is presented in Table 2, with DeepLabv3 using a ResNet50 backbone achiev-

ing the highest IoU with a score of 60.59%. This indicates that this model better localizes 

and accurately captures the shape of the fire regions. This can be observed by comparing 

the mask prediction generated by DeepLabv3 using ResNet50 in Figure 7 with those pro-

duced by U-Net (Figure 8) and DeepLabv3 using MobileNetV2 (Figure 9). Figure 7 pre-

sents a more detailed mask segmentation that matches the ground truth displayed on the 

middle row for each figure. The model’s precision score is 88.4%, meaning that the fire 

regions predicted are likely to be accurate, but a much lower recall of 64.63% indicates 

that the model struggles to detect all the fire areas present in the ground truth. The high 

IoU is likely due to the model’s atrous convolutions and ASPP module allowing it to better 

capture multi-scale contextual information, leading to more precise fire boundary deline-

ation, while the relatively weak F1-Score is likely due to the limited training data com-

bined with how large the model is (11,852,353 parameters), leading to some underfitting. 

Figure 10 illustrates the loss curve of DeepLabv3 with ResNet50 which shows that the 

testing loss curve is relatively unstable. This could result from poor fitting due to a small 

dataset size, high variance in the dataset, or a non-representative test split. 

In contrast, U-Net achieved the highest F1 score of 90.84%, outperforming both 

DeepLabv3 variants, which suggests that it performs well both in positive and negative 

cases. Its precision score was particularly strong compared to other models with a score 

of 91.83%, indicating a reliable detection of fire regions. And a similarly strong recall score 

of 90.13% indicates that the model was able to detect the majority of fire regions. This 

makes U-Net an all-around robust model. However, the model achieved a mean IoU score 

of 49.71%, indicating some difficulty for the model to accurately localize and size the fire 

region compared to DeepLabv3 with a ResNet50 backbone. Similar to that of DeepLabv3 

with ResNet50, the loss curve of U-Net, shown in Figure 11, exhibits signs of instability in 

the early training phase. 

The MobileNetV2 variant of DeepLabv3 is far more computationally efficient than 

both its ResNet50 counterpart and U-Net. In terms of computational efficiency (see Table 

2), DeepLabv3 with MobileNetV2 required only 20% of the memory and number of pa-

rameters compared to U-Net, and 3% of the memory footprint and number of parameters 

compared with the ResNet50 variant, making it a viable choice for real-time or resource 

constrained environments. However, the original implementation of DeepLabv3 with 

MobileNetV2 backbone without frozen layers and initialization on ImageNet weights (de-

tailed in Section 5.3) provided mitigated results due to the effect of vanishing gradient, 

with a precision and recall of 63.4% and 92.6% respectively, and unstable training loss (see 

Figure 12). This is likely caused by the bottom layers’ weights being poorly fitted and ini-

tialized. As a result, the noise introduced in the early layers propagates through the net-

work and is interpreted by top layers as a fire region. This effect can be visualized in Fig-

ure 13, where we see multiple false-positive regions. 
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Table 2. Experimental results for compared models including the number of parameters/size of the 

model. Values provided represent the average over 5-fold cross-validation. 

Model Precision (%) Recall (%) F1-Score (%) IoU (%) Param. 

U-Net 91.83 90.13 90.84 49.71 1,941,105 (7.40 MB) 

DeepLabv3 w/Res-

Net50 
88.4 64.63 74.83 60.59 11,852,353 (45.21 MB) 

DeepLabv3 w/Mo-

bileNetV2 

(frozen) 

87.84 83.22 84.85 49.71 

401,701 (1.53 MB) 

(trainable: 317,301) 

(untrainable: 84,400) 

DeepLabv3 w/Mo-

bileNetV2 

(unfrozen) 

63.38 92.61 76.24 49.71 

401,698 (1.53 MB) 

(trainable: 391,282) 

(untrainable: 10,416) 

 

Figure 7. Results with DeepLabv3 using ResNet50: (top row) input image; (middle row) ground 

truth; (bottom row) generated mask segmentation. 

 

Figure 8. Results with U-Net: (top row) input image; (middle row) ground truth; (bottom row) gen-

erated mask segmentation. 
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Figure 9. Results with DeepLabv3 using MobileNetV2 with frozen layers: (top row) input image; 

(middle row) ground truth; (bottom row) generated mask segmentation. 

 

Figure 10. Loss curve while training and testing the DeepLabv3 model with ResNet50 backbone 

calculated at every epoch. 

 

Figure 11. Loss curve while training and testing U-Net model calculated at every epoch. 
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Figure 12. Loss curve while training and testing DeepLabv3 model using MobileNetV2 without 

freezing layers during training, calculated at every epoch. 

 

Figure 13. Results with DeepLabv3 using MobileNetV2 without freezing layers during training: (top 

row) input image; (middle row) ground truth; (bottom row) generated mask segmentation. 

When frozen layers and initialization with ImageNet weights are implemented on 

DeepLabv3 model with MobileNetV2 as a backbone, the performance improved with a 

precision of 87.84% and recall of 83.22% (Table 2), leading to a F1-score of 84.85% and IoU 

of 49.71%, making it comparable to U-Net and surpassing the ResNet50 variant. As ex-

pected, freezing layers leads to an increased number of untrainable parameters but is not 

detrimental to performance. This strategy also helps stabilize the testing loss curve, as can 

be seen when comparing the loss curve of the model with frozen layers (Figure 14) with 

the loss curve with unfrozen layers (Figure 12). Freezing some layers during training does 

help prevent the effect of vanishing gradients while not increasing the overall complexity 

and accelerating the training process. 
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Figure 14. Loss curve while training and testing DeepLabv3 model using MobileNetV2 with frozen 

layers during training, calculated at every epoch. 

The choice to downscale the input resolution to 256 × 256 also limits the model’s per-

formance, as many details are lost during resizing. Using the same U-Net architecture on 

downscaled input images results in a lower IoU than the 78.17% originally reported in [18] 

with full-resolution inputs. However, the performance of U-Net achieved in this compar-

ative study demonstrates a similar precision and recall to the results obtained with the 

FLAME dataset in [18], which used a resolution of 512 × 512, and where they obtained a 

precision of 91.99% and a recall of 83.88%. This confirms that the proposed model is able 

to accurately extract features associated with the fire regions but the lower IoU may indi-

cate that some features related to the shape and location of the fire areas might have been 

lost. However, the proposed simplified architecture and training strategy with frozen lay-

ers allows for better and more efficient processing, which is important in an application 

where computational resources are limited. Overall, this study provides evidence that the 

DeepLabV3 with a MobileNetV2 backbone form an effective model for wildfire segmen-

tation on limited computational resources. Its precision and IoU scores are comparable to 

the state of the art but with significantly less parameters making it a significantly more 

compact model to implement on resource-limited hardware. Comparatively, U-Net re-

mains a robust alternative yielding better precision and recall making it a suitable alter-

native in cases where robust performance is necessary. Thus, both models offer valuable 

tools in wildfire management systems. 

7. Discussion 

This research provides practical insight to design a deep learning-based approach to 

segmentation tasks for wildfire monitoring. One notable insight is the performance of 

DeepLabv3 model using MobileNetV2 as the backbone for segmentation tasks. The model 

was able to perform on par with U-Net while being significantly lighter in computational 

requirements and memory storage space, making it a suitable choice to deploy on re-

source-constrained UAVs. Interestingly, DeepLabv3 with ResNet50 as a backbone, while 

able to localize and accurately predict the shape of fire areas at a relatively large scale, was 

severely lacking in detecting smaller fire regions. U-Net has demonstrated very strong 

performance in this study. The inclusion of exponential linear unit (ELU) activation as 

proposed in [31] improved model convergence and stability. In future work, a similar ap-

proach could be taken with DeepLabv3 to enhance its performance. 

To mitigate the impact of vanishing gradient in MobileNet, skip connections may be 

considered, although this approach risks increasing the complexity of models. Instead, the 

use of alternative activation function or batch normalization [36] may be investigated. 
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Another important consideration is the impact of the input image resolution on segmen-

tation performance. Due to hardware limitations, in this study a reduced resolution of 256 

× 256 is used. Reducing the image scale allows for faster training speed, and it makes the 

models less computationally taxing, but at the cost of losing some features that the model 

would advantageously capture to achieve more accurate predictions. Future study could 

focus on processing higher-resolution images for better accuracy while focusing on opti-

mizing memory footprint to find a balance between accuracy and efficiency. Furthermore, 

this study excluded thermal imaging data, as we suggest that thermal imagery is more 

prone to generating false positives and that fusing RGB data with thermal imagery could 

be computationally taxing. However, thermal information could be interesting to explore 

future work in scenarios with low visibility due to smoke or darkness. One of the primary 

issues encountered during this project is the limited amount of data and the low variabil-

ity in publicly available datasets on forest fire. While using a k-fold cross-validation ap-

proach has allowed to reduce the effect of a small dataset on evaluation metrics, expand-

ing the dataset with additional aerial images of fire regions in a larger variety of contexts 

would further help the models to generalize. This is a problem highlighted particularly 

by some of the larger models like ResNet50, which require a large amount of data to per-

form well. This could be improved by applying data augmentation. Lastly, one imple-

mentation worth exploring in subsequent work is the implementation of techniques to 

further reduce the computational complexity of proposed models, such as pruning or 

quantization. 

8. Conclusions 

In this study we focused on the segmentation of fire regions in color images contained 

in images captured by the FLAME dataset. Three models are compared and strategies are 

formulated to further improve on their performance: U-Net as proposed in [18] and 

DeepLabv3 using two different backbones, ResNet50 and MobileNetV2 respectively. The 

experimental methodology involves data preprocessing, models implementation, and 

training/testing using k-fold cross-validation. Experimental results show that DeepLabv3 

with MobileNetV2 as a backbone closely matches the performance of the state-of-the-art 

model, U-Net, while providing a significantly reduced computational footprint. Mean-

while, DeepLabv3 with a ResNet50 backbone, while better at localizing larger fire areas, 

tends to perform worse on cases of a smaller size and is significantly heavier computa-

tionally. Our findings suggest that this architecture would be preferable for cases where 

accurate prediction of the shape of the fire region is more important than computational 

efficiency. While U-Net remains a competitive choice due to its robust F1-score, its relative 

complexity compared to DeepLabv3 with MobileNetV2 backbone makes it a less desirable 

model for small UAVs. 

A key contribution of this paper is the experimental and comparative evaluation of 

multiple DeepLabv3 models on the FLAME dataset. The work also proposes a method to 

stabilize training and minimize the vanishing gradient problem in MobileNetV2 without 

increasing its computational complexity, while also reducing its training time by freezing 

a portion of the backbone layers and initializing those weights to ImageNet. This study 

highlights the effect of different backbones on performance and points out the strengths 

and weaknesses of these different backbones depending on the application. This study 

highlights the potential of using DeepLabv3 and U-Net for fire region segmentation in 

imagery from aerial vehicles and provides an effective method to assist fire management 

operations by contributing a more reliable and efficient monitoring system. 

Future work will focus on implementing fusion models for segmentation where ther-

mal imaging is combined with the current model to improve segmentation accuracy. 
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Obtaining larger datasets with more variability will also contribute to improve the models 

ability to generalize. 
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