Università di Foggia

The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

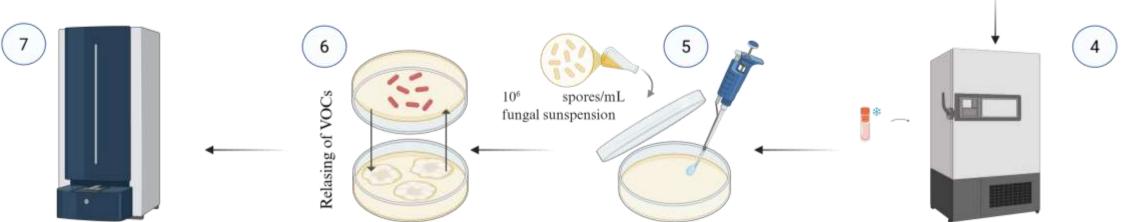
Biological tools for microbial control: Leuconostoc mesenteroides and Lactiplantibacillus plantarum strains isolated from Apulian honeys as promising antifungal agents

Ester Presutto^{1*}, Maria Lucia Valeria de Chiara², Vittorio Capozzi², Giuseppe Spano¹, Mariagiovanna Fragasso¹

¹Department of Agriculture Food Natural Science Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy

²Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, Foggia, Italy

*Corresponding author: ester.presutto@unifg.it



INTRODUCTION & AIM

Lactic acid bacteria (LAB) are emerging as valuable agents for microbial biocontrol, due to their ability to produce broad-spectrum antagonistic compounds, including organic acids, bacteriocins, bioactive peptides, short-chain fatty acids, and volatile organic compounds (VOCs).

The use of LAB as natural preservatives aligns with current trends toward sustainable and eco-friendly food production systems, offering an alternative to synthetic chemical preservatives. The aim of this study was to assess the antifungal potential of 10 LAB strains belonging to the species *Leuconostoc* (*Leuc.*) *mesenteroides* and *Lactiplantibacillus plantarum*, isolated from five varieties of Apulian honey: i) honeydew honey, ii) French honeysuckle (Sulla) honey, iii) wildflower honey, iv) coriander honey, and v) *Eucalyptus* honey. Antifungal activity was investigated through a sequential assay combining the agar *overlay* method and the 'Plate-on-Plate' technique, tested against *Aspergillus* (*A.*) *niger*, *Penicillium* (*P.*) *crustosum*, *P. roqueforti*, *Aureobasidium* (*Au.*) *pullulans* and *Geotrichum* spp.

Sampling, plating, and incubation at 37° C - Morphological visualisation, selection, aerobiosis and anaerobiosis. METHODS 3 9.0 mL sterile water (0.86% NaCl) 1:10 Preliminary biochemical (Gram stain and catalase test), and antibacterial characterisation.

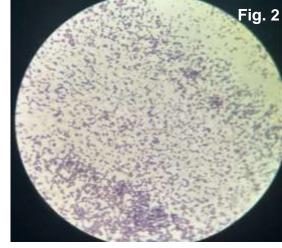
Molecular **identification** of the most promising strains (MALDI-ToF-MS).

MC-1

Tab. 1

VOCs production evaluation ("*Plate-on-Plate*" assay).

First antifungal screening using a double-layer ("*overlay*") agar assay.


Lactiplantibacillus plantarum

Preservation of selected putative LAB strains at $-80\,^{\circ}\text{C}$ for long-term storage.

ID strains Isolation source Species MME-1 Honeydew honey Leuconostoc mesenteroides MME-2 Leuconostoc mesenteroides Honeydew honey MME-3 Honeydew honey Leuconostoc mesenteroides MME-4 Honeydew honey Leuconostoc mesenteroides MME-9 Honeydew honey Lactiplantibacillus plantarum MM1 Wildflower honey Lactiplantibacillus plantarum MM9 Wildflower honey Lactiplantibacillus plantarum Sulla honey Lactiplantibacillus plantarum MS1-CB Eucalyptus honey ME-4 Lactiplantibacillus plantarum

Coriander honey

LAB strains were preliminarily selected based on morphological and biochemical characterisation (Figs. 1–2). The most promising isolates were then identified at the species level by Matrix-Assisted Laser Desorption/Ionization—Time of Flight Mass Spectrometry (MALDI-ToF MS).

CONCLUSIONS

The results support the application of LAB from non-conventional matrices as bioprotective agents in food and packaging systems, promoting the development of 'green' solutions in line with the principles of sustainability and the circular bioeconomy.

AKNOWLEDGMENTS

Vittorio Capozzi is supported by the funding European Commission-NextGenerationEU, Project SUS-MIRRI.IT "Strengthening the MIRRI Italian Research Infrastructure for Sustainable Bioscience and Bioeconomy", code n. IR0000005. Mariagiovanna Fragasso and Giuseppe Spano are supported by the funding of the European Union Next-Generation EU [PNRR-Mission 4 Component 2, Investment .4-D.D. 1032 17 June 2022, CN00000022] within the Agritech National Research Centre for Agricultural Technologies. Maria Lucia Valeria de Chiara is supported by the project by INTelligent, ACTive MicroBIOme- based, biodegradable PACKaging for Mediterranean food - INTACTBioPack (PRIMA Section 2 Call multi-topics 2023 STEP 2).

RESULTS & DISCUSSION

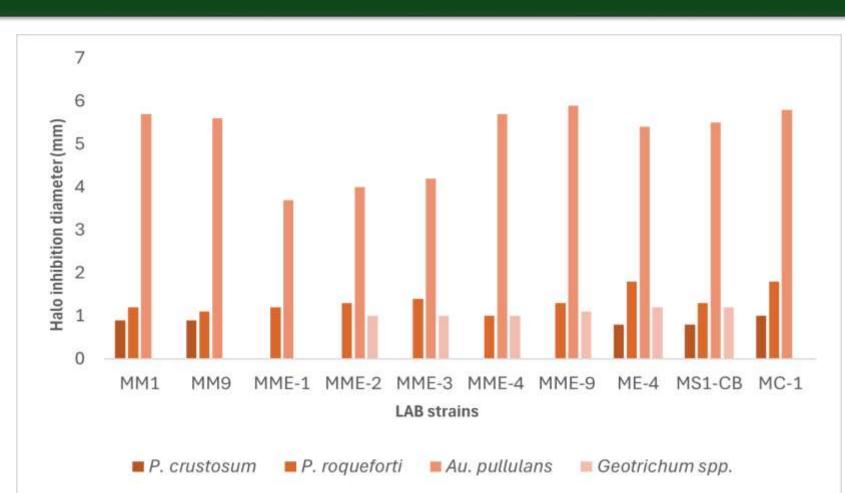


Fig. 3. Halo inhibition diameter (mm) of LAB strains using the *overlay* assay.

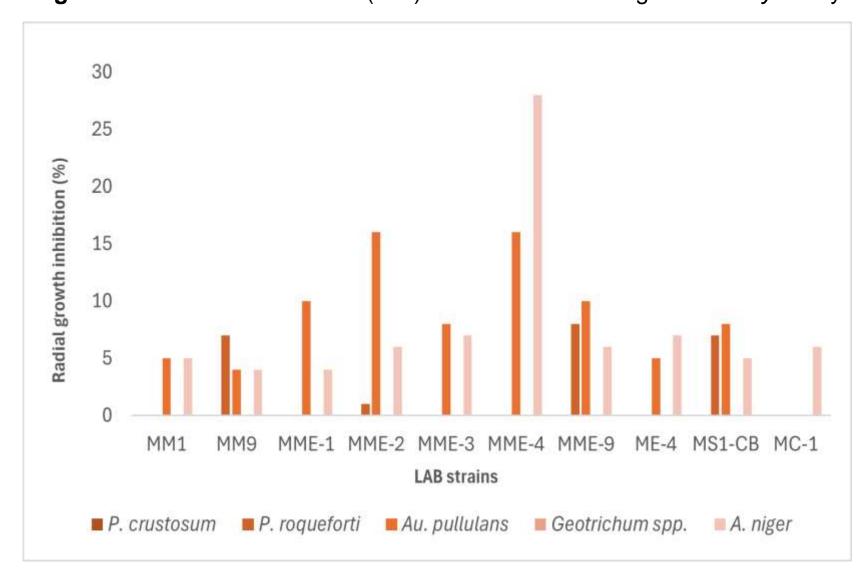
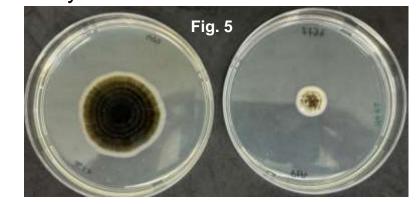
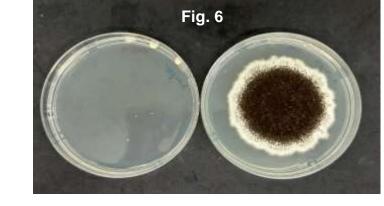




Fig. 4. Radial growth inhibition (%) by LAB VOCs using the 'Plate-on-Plate' assay.

In both cases, all strains exhibited moderate to high inhibitory activity against *P. roqueforti* and *Au. Pullulans* (Fig. 3-4). *Leuc. mesenteroides* MME-2 exhibited clear inhibition halos against *Au. pullulans* (Fig. 5). Complete inhibition of *A. niger* mycelial growth was observed exclusively for *Leuc. mesenteroides* MME-4 in the '*Plate-on-Plate*' assay, suggesting the involvement of bioactive VOCs within the shared headspace (Fig. 6).

FUTURE WORK / REFERENCES

- Integrate omic approaches to link genotype and antimicrobial phenotype;
- Validate selected LAB strains in real food/packaging systems;
- Assess honey-derived LAB in sustainable food preservation and biocontrol system.

De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis Cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138, doi.org/10.3390/foods9091138, De Simone, N.; López, L.; Ciudad, C.S.; Scauro, A.; Russo, P.; Rodríguez, J.; Spano, G.; Martínez, B. Antifungal Activity of Lactiplantibacillus plantarum Isolated from Fruit and Vegetables and Detection of Novel Antifungal VOCs from Fungal-LAB Co-Cultures. Food Biosci. 2024, 58, 103824. doi.org/10.1016/j.fbio.2024.103824

Cirat, R.; Capozzi, V.; Benmechernene, Z.; Spano, G.; Grieco, F.; Fragasso, M. LAB Antagonistic Activities and Their Significance in Food Biotechnology: Molecular Mechanisms, Food Targets, and Other Related Traits of Interest. Fermentation 2024, 10, 222. doi.org/10.3390/fermentation10040222