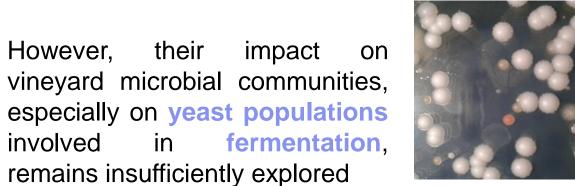
The 1st International Online Conference on Fermentation

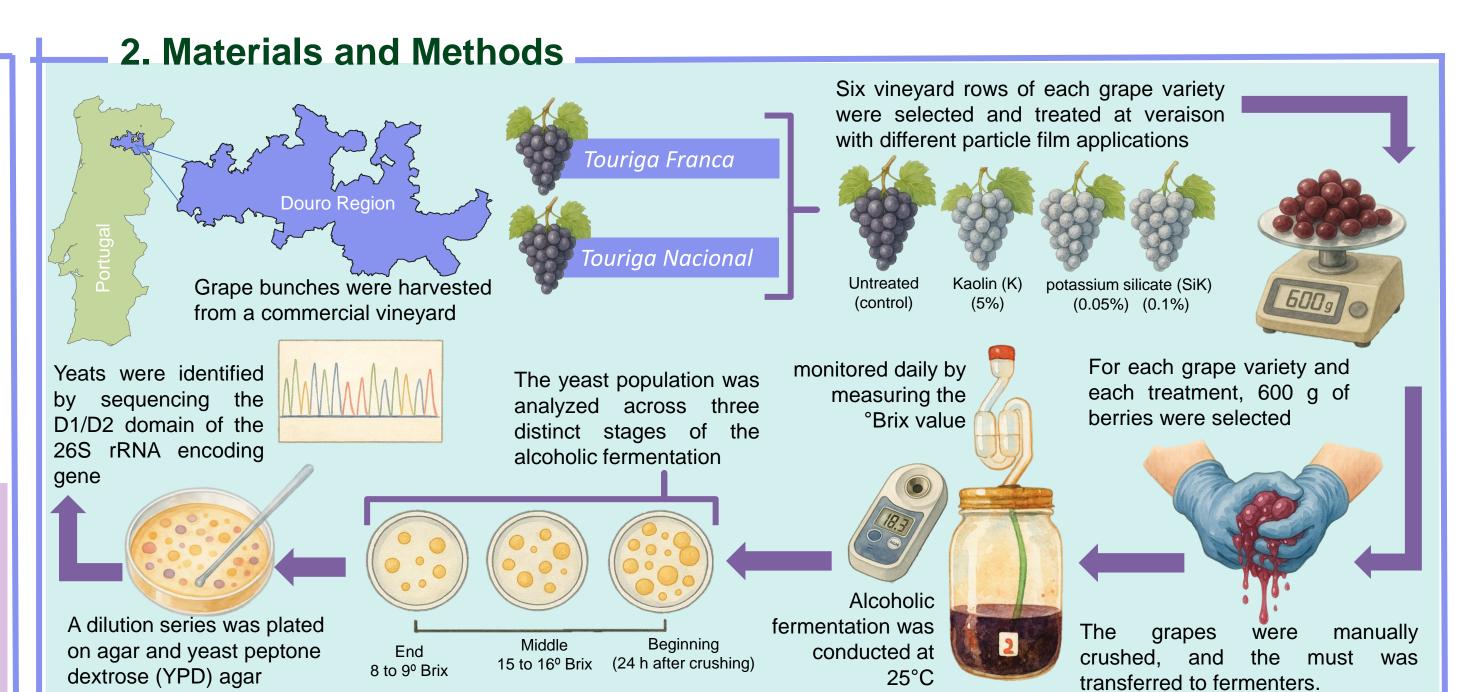
12-13 November 2025 | Online

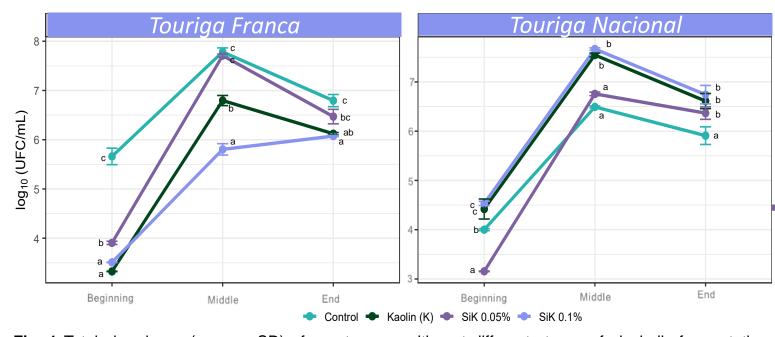

To What Extent Do Particle Film Applications on Grapes Affect Yeast Populations During Alcoholic Fermentation?

Isabel Rodrigues^a, Fernanda Cosme^{b,c}, Virgílio Falco^{d,e}, António Inês^{b,c}

- ^a CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- bCentro de Química Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- ^cDepartamento de Biologia e Ambiente (DEBA), Escola de Ciências da Vida e do Ambiente (ECVA) Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
- dCentre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD)
- ^eLaboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto (UP)

-1. Introduction


Particle films, such as Kaolin and Potassium silicate, have been widely studied in viticulture for their protective effects against biotic and abiotic stresses.



Objectives

This study investigates the extent to which pre-harvest applications of kaolin and potassium silicate affect yeast community dynamics during the alcoholic fermentation of grape musts from two Vitis vinifera varieties: "Touriga Nacional" and "Touriga Franca"

3. Results & Discussion

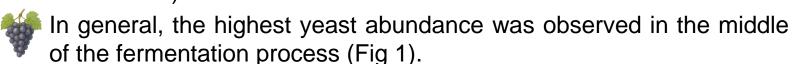

Fig. 1 Total abundance (mean ± SD) of yeast communities at different stages of alcoholic fermentation of Touriga Franca and Touriga Nacional musts, following pre-harvest applications of different treatments: control, kaolin (5%), and potassium silicate (SiK) at concentrations of 0.1% and 0.05%.

Table 1. Results of the Analysis of Variance (ANOVA) for the Generalized Linear Model (GLM), aiming to assess the main effects and interactions between the factors variety, treatment, and fermentation phase on the response variable.

	Sum Sq	Df	F value	p-value
(Intercept)	128.2	1	3041.1	< 0.0001
variety	5.5	1	130.7	< 0.0001
treatment	13.7	3	108.3	< 0.0001
fermentation phase	9.0	2	107.0	< 0.0001
variety:treatment	11.1	3	87.7	< 0.0001
variety:fermentation phase	0.6	2	7.1	< 0.0001
treatment:fermentation phase	6.9	6	27.2	< 0.0001
variety:treatment:fermentation phase	3.1	6	12.4	< 0.0001
Residuals	3.0	72		

Touriaa Franca

Yeast abundance in the must was significantly affected by the interaction between variety, treatment, and fermentation time (Fig. 1 and Table 2).

Species richness and diversity declined as fermentation progressed, due to increasing ethanol concentrations (Fig. 2).

The yeast community varied significantly among varieties, treatments, and fermentation phases (Fig.3 and Table 2).

In "Touriga Nacional", the 0.05% potassium silicate treatment led to early dominance of *S. cerevisiae*, whereas this species was absent at the same stage in the "Touriga Franca" (Fig 4).

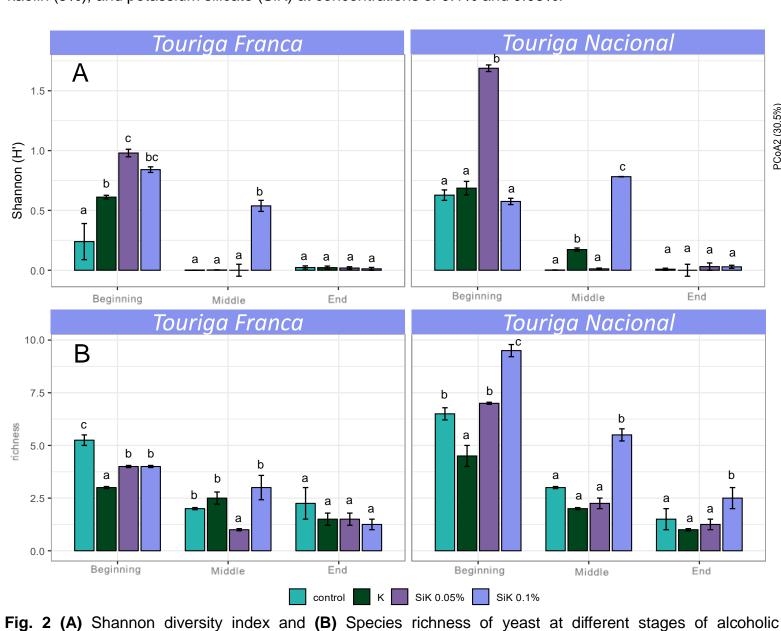


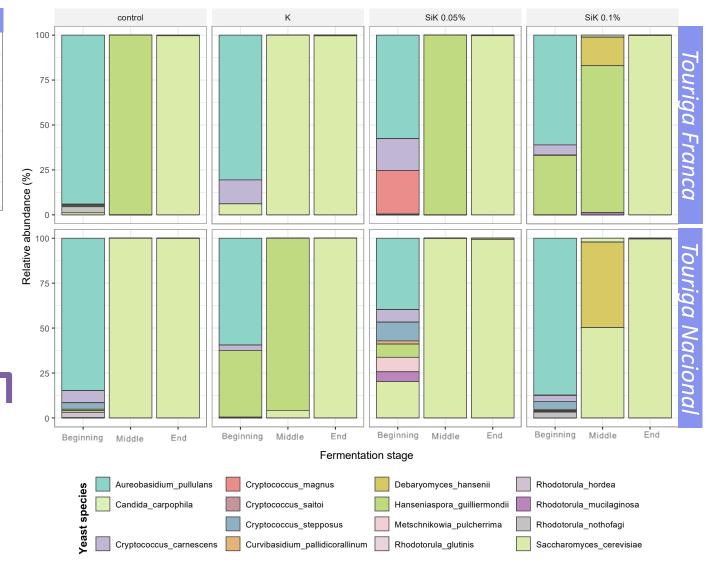
Table 2. Results of the permutational multivariate analysis of variance (PERMANOVA) assessing the effects of variety, treatment, and fermentation phase, as well as their interactions, on the yeast community composition.

Sum Sq Df R2 F p-value

PCoA1 (60.7%)

Fig. 3 Principal Coordinate Analysis (PCoA) of yeast community composition at

different stages of alcoholic fermentation of Touriga Franca and Touriga Nacional


musts, following pre-harvest applications of different treatments: control, kaolin (5%),

ontrol K SiK 0.05% SiK 0.1%

and potassium silicate (SiK) at concentrations of 0.1% and 0.05%.

Touriga Naciona

	Sum Sq	Df	R2	F	p-value
variety	0.68	1	0.02	163	0.001
treatment	0.59	3	0.02	47	0.001
fermentation phase	18.07	2	0.64	2160	0.001
variety:treatment	2.99	3	0.11	238	0.001
variety:fermentation phase	1.31	2	0.05	156	0.001
treatment:fermentation phase	1.08	6	0.04	43	0.001
variety:treatment:fermentation phase	3.34	6	0.12	133	0.001
Residuals	0.30	72	0.01		
Total	28.37	95	1.00		

Fig. 4 Relative frequency of yeast species isolated at different stages of alcoholic fermentation of Touriga Franca and Touriga Nacional musts, following pre-harvest applications of different treatments: control, kaolin (5%), and potassium silicate (SiK) at concentrations of 0.1% and 0.05%.

4. Conclusion

Particle films modify yeast community structure during fermentation.

fermentation of Touriga Franca and Touriga Nacional musts, following pre-harvest applications of different

treatments: control, kaolin (5%), and potassium silicate (SiK) at concentrations of 0.1% and 0.05%.

The impact varies with grape variety and treatment type.

Potassium silicate (0.05%) promoted earlier dominance of S. cerevisiae in Touriga Nacional.

Particle films should be considered not only for vineyard protection but also for their potential influence on wine microbiota.

Acknowledgements

This work was supported by Foundation for Science and Technology (FCT, Portugal) for financial support by national funds to Chemistry Research Centre-Vila Real (CQ-VR) (UIDB/00616/2020 and UIDP/00616/2020), and to the research Project INNOVINE&WINE-"Plataforma de inovação da vinha e do vinho", grant number NORTE-01-0145-FEDER-000038