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Abstract: Recently, the concept of generalized entropy has been proposed in the literature
of information theory. In the present paper, we introduce and study the notion of generalized
entropy in the interval (t1, t2) as uncertainty measure. It is shown that the suggested
information measure uniquely determines the distribution function. Also, its properties has
been studied. Some results have been obtained and some distributions such as uniform,
exponential, Pareto, power series and finite range have been characterized by doubly
truncated (interval) generalized entropy. Further, we describe a few orders based on this
entropy and show its properties.
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1. Introduction

In survival studies and life testing, information about the lifetime between two time points is available.
In other words, event time of individuals which lies within a specific time interval are only observed.
Thus, the analyzer cannot have access to the information about the subjects outside of this interval.
For example, final products are often subject to selection checkup before being sent to the customer.
The usual practice is that if a product’s performance falls within certain tolerance limits, it is refereed
compatible and sent to the customer. If it fails, a product is rejected and thus revoked. In this case, the
actual distribution to the customer is called doubly (interval) truncated.

Nowadays, uncertainty measures has earned a great deal of authors attention. Shannon [16] was the
first one who introduced entropy, known as Shannon’s entropy, into information theory. For an absolutely
continuous nonnegative random variable X having probability density function f , Shannon’s entropy is
defined as
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H (X) = −
∫ ∞

0

f (x) log f (x) dx = −E (log f (X)) . (1)

It measures the expected uncertainty contained in probability density function about the predictability
of an outcome of X . There are several generalizations of (1). Khinchin [9] generalized (1) and defined
measure as

Hφ (X) = −
∫ ∞

0

f (x)φ (f (x)) dx, (2)

where φ is a convex function such that φ(1) = 0. By choosing two particular φ, (2) can be rewritten
as

Hβ
1 (X) =

1

β − 1

(
1−

∫
fβ (x) dx

)
(3)

and

Hβ
2 (X) =

1

1− β
log

(∫
fβ (x) dx

)
(4)

for some fixed β > 0 and β ≥ 1. When β → 1 in (3) or (4), then they tend to (1). For some
distributions, H (X) may be negative but one can find nonnegative Hβ

1 (X) and Hβ
2 (X) by choosing

appropriate value of β.
When a unit studied that survived up to an age t, the Shannon’s entropy is not suitable for measuring

the uncertainty. So the notion of residual and past uncertainty has been introduced. Ebrahimi [6], instead
of (1) defined

H (X, t) = −
∫ ∞
t

f (x)

F (t)
log

f (x)

F (t)
dx, (5)

where FX(t) be the survival function of the X . It is well known from (5) that units which exhibit less
uncertainty in life times are more reliable and hence measure (5) has much relevance in characterizing,
ordering and classifying life distributions according to its behavior. See for more details Asadi and
Ebrahimi [2], Blezunce et al. [3], Ebrahimi and Pellerey [7] and Nair and Rajesh [13]. In the same spirit,
Nanda and Paul [14] have extended (3) and (4) for a unit surviving up to age t as

Hβ
1 (X, t) =

1

β − 1

(
1−

∫ ∞
t

(
f (x)

F (t)

)β
dx

)
(6)

and

Hβ
2 (X, t) =

1

1− β
log

(∫ ∞
t

(
f (x)

F (t)

)β
dx

)
(7)

respectively. It can be noted that when β → 1 in (6) or (7), then they tend to (5). In some practical
situations, uncertainty is related to past life time rather than future. As an example, one can be find past
uncertainty of a unit that failed at time t. The past entropy over (0, t) of random life time X have been
defined by Di Crescenzo and Longobardi [5] as
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H (X, t) = −
∫ t

0

f (x)

F (t)
log

f (x)

F (t)
dx, (8)

where FX(t) be the distribution function of X . Gupta and Nanda [8] have defined generalized past
entropies given by

H
β

1 (X, t) =
1

β − 1

(
1−

∫ t

0

(
f (x)

F (t)

)β
dx

)
(9)

and

H
β

2 (X, t) =
1

1− β
log

(∫ t

0

(
f (x)

F (t)

)β
dx

)
(10)

respectively. As β → 1 in (9) or (10), then they reduce to (8).
In some situations, information between two points is considered. Therefore statistical measures in

information theory under condition of doubly truncated random variables must be studied. A dynamic
uncertainty measure for two sided truncated random variables has been discussed by Sunoj et al. [17],
Misagh and Yari [11] and Misagh and Yari [12] as an extension of Shannon entropy. They consider
the notion of interval entropy of random life time X in the interval (t1, t2) as an uncertainty measure
contained in (X|t1 < X < t2) as

IH (X, t1, t2) = −
∫ t2

t1

f (x)

F (t2)− F (t1)
log

f (x)

F (t2)− F (t1)
dx. (11)

In this paper, an effort is made to develop some new characterizations to certain probability
distributions and families of distributions using definition of doubly truncated generalized entropy which
are suitable for modeling and analysis of lifetime data. This paper is arranged as follows; in section 2,
as preliminaries, first and second kind of generalized interval entropies defined. Properties of these
entropies obtained in section 3. In section 4, a few ordering results are shown based of entropies defined
in section 2. Finally, conclusion is illustrated in last section.

2. Preliminaries

In this section, we define first and second kind of generalized interval entropies as uncertainty
measures and then these definitions obtained for some distributions.

Definition 2.1.
i) The first kind of generalized interval entropy of order β for a random lifetime Y between time t1

and t2 is

IHβ
1 (X, t1, t2) =

1

β − 1

(
1−

∫ ∞
0

(fX (y))β dx

)
, for β 6= 1, β > 0 (12)

ii) The second kind of generalized interval entropy of order β for a random lifetime Y between time t1
and t2 is

IHβ
2 (X, t1, t2) =

1

1− β
log

(∫ ∞
0

(fX (y))β dx

)
, for β 6= 1, β > 0 (13)
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where fX (y) is the probability density function of Y d
= X|t1 < X < t2 and (t1, t2) ∈ D ={

(u, v) ∈ R+2
;F (u) ≤ F (v)

}
.

Relations (12) and (13) for some β > 0 and β 6= 1 can be rewritten as

IHβ
1 (X, t1, t2) =

1

β − 1

(
1−

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)

=
1

β − 1

(
1− E

(
f (X)

F (t2)− F (t1)

)β−1
)

(14)

and

IHβ
2 (X, t1, t2) =

1

1− β
log

(∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)

=
1

1− β
logE

(
f (X)

F (t2)− F (t1)

)β−1

(15)

respectively. Equations (14) and (15) leads to

(β − 1) IHβ
1 (X, t1, t2) = 1− (F (t2)− F (t1))−β

∫ t2

t1

(f (x))β dx (16)

and

(1− β) IHβ
2 (X, t1, t2) = log

∫ t2

t1

(f (x))β dx− β log (F (t2)− F (t1)) (17)

respectively. When the system has the age t1, for different values of β, IHβ
i (X, t1, t2) provides the

information spectrum of the systems remaining life until age t2.
Also, we have lim

t1→0+
IHβ

1 (X, t1, t2) = H
β

1 (X, t2) and lim
t2→∞

IHβ
1 (X, t1, t2) = Hβ

1 (X, t1). The same

results hold for IHβ
2 (X, t1, t2).

In the Example 2.1, IHβ
1 (X, t1, t2) and IHβ

2 (X, t1, t2) obtained for some distributions. We first give
definition of general failure rate (GFR) functions extracted from Navarro and Ruiz [15].

Definition 2.1. The GFRs of a random variable X having density function f (x) and cumulative
distribution function F (x) are given by hj (t1, t2) =

f(tj)

F (t2)−F (t1)
, j = 1, 2.

Example 2.1. Let X be a random variable with
i) exponential distribution with survival function F (x) = e−θx;x > 0 then

IHβ
1 (X, t1, t2) =

1

β − 1

(
1 +

1

θβ

[
hβ2 (t1, t2)− hβ1 (t1, t2)

])
(18)

and

IHβ
2 (X, t1, t2) =

1

1− β
log

(
− 1

θβ

[
hβ2 (t1, t2)− hβ1 (t1, t2)

])
(19)

ii) finite range distribution with survival function F (x) = (1− ax)b; 0 < x < 1
a
, b > 0, a > 0 then

IHβ
1 (X, t1, t2) =

1

β − 1

(
1− 1

a (β (b− 1) + 1)

[
(1− at1)hβ1 (t1, t2)− (1− at2)hβ2 (t1, t2)

])
(20)
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and

IHβ
2 (X, t1, t2) =

1

1− β
log

(
1

a (β (b− 1) + 1)

[
(1− at1)hβ1 (t1, t2)− (1− at2)hβ2 (t1, t2)

])
(21)

iii) Pareto II distribution with survival function F (x) = (1 + px)−q;x > 0, p > 0, q > 0 then

IHβ
1 (X, t1, t2) =

1

β − 1

(
1− 1

p

[
(1 + pt2)hβ2 (t1, t2)− (1 + pt1)hβ1 (t1, t2)

])
(22)

and

IHβ
2 (X, t1, t2) =

1

1− β
log

(
1

p

[
(1 + pt2)hβ2 (t1, t2)− (1 + pt1)hβ1 (t1, t2)

])
(23)

iv) power distribution with survival function F (x) = 1−
(
x
a

)b
; 0 < x < a, a > 0, b > 0 then

IHβ
1 (X, t1, t2) =

1

β − 1

[
1−

(
t2

β (b− 1) + 1
hβ2 (t1, t2)− t1

β (b− 1) + 1
hβ1 (t1, t2)

)]
(24)

and

IHβ
2 (X, t1, t2) =

1

1− β
log

[
t2

β (b− 1) + 1
hβ2 (t1, t2)− t1

β (b− 1) + 1
hβ1 (t1, t2)

]
(25)

3. Properties

In order to attain a decomposition of Hβ
1 (X) and Hβ

2 (X) similar to that given in Proposition 2.1 of
Di Crescenzo and Longobardi [4] we have the following theorem.

Theorem 3.1. For a random lifetime X , Hβ
1 (X) and Hβ

2 (X) can be expressed as follows

Hβ
1 (X) =

1

β − 1
−
[
F β (t1)

β − 1

(
1− (β − 1)H

β

1 (X, t1)
)

−(F (t2)− F (t1))β

β − 1

(
1− (1− β) IHβ

1 (X, t1, t2)
)

−F
β

(t2)

β − 1

(
(1− β)Hβ

1 (X, t2)
)]

, (26)

and

Hβ
2 (X) =

1

1− β
log
[
F β (t1) exp

(
(1− β)H

β

2 (X, t1)
)

+ (F (t2)− F (t1))β exp
(

(1− β) IHβ
2 (X, t1, t2)

)
+F

β
(t2) exp

(
(1− β)Hβ

2 (X, t2)
)]
. (27)
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Proof. Recalling (3), (6) and (12),

Hβ
1 (X) =

1

β − 1

(
1−

∫ ∞
0

fβ (x) dx

)
=

1

β − 1

(
1−

(∫ t1

0

(f (x))β dx+

∫ t2

t1

(f (x))β dx+

∫ ∞
t2

(f (x))β dx

))
=

1

β − 1

(
1− F β (t1)

∫ t1

0

(
f (x)

F (t1)

)β
dx

− (F (t2)− F (t1))β
∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

−F β
(t2)

∫ ∞
t

(
f (x)

F (t2)

)β
dx

)
, (28)

the other part is similar. �

Similar to what given by Di Crescenzo and Longobardi [5], Theorem 4.1 can be interpreted in the
following way. The uncertainty about the failure of a unit can be decomposed into four parts: first, the
uncertainty about the failure time in (0, t1) such that the unit has failed before t1; second, the uncertainty
about the failure time in the interval (t1, t2) such that the unit has failed after t1 but before t2; third, the
uncertainty about the failure time in (t2,+∞) such that it has failed after t2; and forth, the uncertainty of
the random variable which determines if the unit has failed before t1 or in between t1 and t2 or after t2.

The following theorem is a characterization problem that explains the generalized interval entropy
which determines the distribution function uniquely. One may get a similar kind of result in Belzunce et
al. [3].

Remark 3.1. GFR functions determine distribution function uniquely. See Navarro and Ruiz [15].
Theorem 3.2. If X has an absolutely continuous distribution function F (t) and if
(i) IHβ

1 (X, t1, t2) be increasing with respect to both coordinates t1 and t2, then IHβ
1 (X, t1, t2)

uniquely determines F (t).
(ii) IHβ

2 (X, t1, t2) be increasing with respect to both coordinates t1 and t2, then IHβ
2 (X, t1, t2)

uniquely determines F (t).
Proof. For proving item (i),

IHβ
1 (X, t1, t2) =

1

β − 1

(
1−

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)
, (29)

which implies that∫ t2

t1

(f (x))β dx = (F (t2)− F (t1))β
(

1− (β − 1) IHβ
1 (X, t1, t2)

)
(30)

then by differentiating (30) with respect to both t1 and t2 and considering hj (t1, t2) =
f(tj)

F (t2)−F (t1)
,

hβ1 (t1, t2) = βh1 (t1, t2)− β (β − 1)h1 (t1, t2) IHβ
1 (X, t1, t2) + (β − 1)

∂IHβ
1 (X, t1, t2)

∂t1
(31)

and

hβ2 (t1, t2) = βh2 (t1, t2)− β (β − 1)h2 (t1, t2) IHβ
1 (X, t1, t2)− (β − 1)

∂IHβ
1 (X, t1, t2)

∂t2
. (32)
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Hence, for fixed and positive t1 and t2, h1 (t1, t2) and h2 (t1, t2) are solutions of g (xt2) = 0 and k (yt1) =

0 where,

g (xt2)
def
= βxt2 − β (β − 1) IHβ

1 (X, t1, t2)xt2 + (β − 1)
∂IHβ

1 (X, t1, t2)

∂t1
− xβt2 (33)

and

k (yt1)
def
= βyt1 − β (β − 1) IHβ

1 (X, t1, t2) yt1 − (β − 1)
∂IHβ

1 (X, t1, t2)

∂t2
− yβt1 . (34)

Differentiating (33) and (34) with respect to xt2 and yt1 , give

∂g (xt2)

∂xt2
= β − β (β − 1) IHβ

1 (X, t1, t2) + (β − 1)− βxβ−1
t2 (35)

and
∂k (yt1)

∂yt1
= β − β (β − 1) IHβ

1 (X, t1, t2) + (β − 1)− βyβ−1
t1 . (36)

Now,
∂g(xt2)
∂xt2

= 0 gives x1 =
(

1− (β − 1) IHβ
1 (X, t1, t2)

) 1
β−1

and
∂k(yt1)
∂yt1

= 0 gives y1 =(
1− (β − 1) IHβ

1 (X, t1, t2)
) 1
β−1

.

Case I: If β > 1 then g (0) = (β − 1)
∂IHβ

1 (X,t1,t2)

∂t1
> 0 and if IHβ

1 (X, t1, t2) is increasing in both
coordinates t1 and t2, then g (∞) =∞. Further it can be seen that

∂2g (xt2)

∂x2
t2

= −β (β − 1)xβ−2
t2 ≤ 0. (37)

Therefore,
∂g(xt2)
∂xt2

is increasing in xt2 and ǵ (x1) = 0, ǵ (∞) = −∞. Thus we see that{
ǵ (xt2) ≥ 0;

ǵ (xt2) < 0;

0 < xt2 < x1

xt2 > x1.
(38)

In the same way, k (0) > 0 and if IHβ
1 (X, t1, t2) is increasing in both coordinates t1 and t2, then

k (∞) =∞. Also
∂2k(yt1)
∂y2t1

≤ 0 and ḱ (y1) = 0, ḱ (∞) = −∞. So{
ḱ (yt1) ≥ 0;

ḱ (yt1) < 0;

0 < yt1 < y1

yt1 > y1.
(39)

Therefore, g (xt2) = 0 and k (yt1) = 0 have unique roots h1 (t1, t2) and h2 (t1, t2).
Case II: If β < 1 then g (0) < 0 and if IHβ

1 (X, t1, t2) is increasing in both coordinates t1 and t2,

g (∞) = −∞. Further, it can be seen that
∂2g(xt2)
∂x2t2

≥ 0 and ǵ (x1) = 0, ǵ (∞) =∞. Therefore,{
ǵ (xt2) ≤ 0;

ǵ (xt2) > 0;

0 < xt2 < x1

xt2 > x1.
(40)

By the same argument, k (0) < 0 and if IHβ
1 (X, t1, t2) is increasing in both coordinates t1 and t2, then

k (∞) = −∞. Also
∂2k(yt1)
∂y2t1

≥ 0 and ḱ (y1) = 0, ḱ (∞) =∞. Thus we have{
ḱ (yt1) ≤ 0;

ḱ (yt1) > 0;

0 < yt1 < y1

yt1 > y1.
(41)
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Therefore, g (xt2) = 0 and k (yt1) = 0 have unique roots h1 (t1, t2) and h2 (t1, t2).
From two cases above, it can be concluded that if IHβ

1 (X, t1, t2) is increasing in both coordinates
t1 and t2 and if g (x1) = 0 and k (y1) = 0, then h1 (t1, t2) and h2 (t1, t2) are the unique solutions of
g (xt2) = 0 and k (yt1) = 0. So IHβ

1 (X, t1, t2) determines hj (t1, t2); j = 1, 2 uniquely. Again, due to
Remark 3.1, hj (t1, t2); j = 1, 2 uniquely determine distribution function.

To prove (ii), from (15) we have

exp
(

(1− β) IHβ
2 (X, t1, t2)

)
=

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx (42)

differentiating both sides with respect to t1 and t2, we get

(1− β)
∂IHβ

2 (X, t1, t2)

∂t1
= βh1 (t1, t2) exp

(
(1− β) IHβ

2 (X, t1, t2)
)
− hβ1 (t1, t2) (43)

(1− β)
∂IHβ

2 (X, t1, t2)

∂t2
= hβ2 (t1, t2)− βh2 (t1, t2) exp

(
(1− β) IHβ

2 (X, t1, t2)
)

(44)

So for fixed t1 and arbitrary t2, h1 (t1, t2) is a positive solution of the following equation

g (xt2) = xt2

β exp
(

(1− β) IHβ
2 (X, t1, t2)

)
1− β

− ∂IHβ
2 (X, t1, t2)

∂t1
−

xβt2
1− β

= 0 (45)

similarly, for fixed t2 and arbitrary t1, h2 (t1, t2) is a positive solution of the following equation

k (yt1) =
yβt1

1− β
− yt1

β exp
(

(1− β) IHβ
2 (X, t1, t2)

)
1− β

− ∂IHβ
2 (X, t1, t2)

∂t2
= 0. (46)

Now,
∂g(xt2)
∂xt2

= 0 gives x1 =
(

exp
(

(1− β) IHβ
2 (X, t1, t2)

)) 1
β−1

and
∂k(yt1)
∂yt1

= 0 gives y1 =(
exp

(
(1− β) IHβ

2 (X, t1, t2)
)) 1

β−1
. Furthermore, considering second-order derivation of g and k with

respect to xt2 and yt1 we have
∂2g (xt2)

∂x2
t2

= βxβ−2
t2 , (47)

and
∂2k (yt1)

∂y2
t1

= −βyβ−2
t1 . (48)

Again, g (0) = −∂IHβ
2 (X,t1,t2)

∂t1
and k (0) = −∂IHβ

2 (X,t1,t2)

∂t2
.

Case I: (β > 1) , g (0) < 0 if IHβ
2 (X, t1, t2) is increasing in both coordinates t1 and t2 and g (∞) =

∞. Similarly, one can say that g (xt2) = 0 has a unique solution. Also, k (0) < 0 and k (∞) = −∞ and
∂2k(yt1 )
∂y2
t1

< 0 i.e. k
(
yt1
)

has a unique solution. Therefore, g (xt2) = 0 and k
(
yt1
)

= 0 have unique roots

h1 (t1, t2) and h2 (t1, t2) respectively.
Case II: (β < 1), g (0) < 0 and k (0) < 0 if IHβ

2 (X, t1, t2) is increasing in both coordinates t1 and
t2. In the same way one can conclude that h1 (t1, t2) and h2 (t1, t2) are unique solutions of g (xt2) = 0

and k
(
yt1
)

= 0 respectively.
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From the above cases, it can be verified that if IHβ
2 (X, t1, t2) is increasing in both coordinates t1 and

t2 and if g (x1) = 0 and k (y1) = 0, then h1 (t1, t2) and h2 (t1, t2) are the unique solutions of g (xt2) = 0

and k (yt1) = 0. So IHβ
2 (X, t1, t2) determines hj (t1, t2); j = 1, 2 uniquely. Now, by virtue of Remark

3.1, hj (t1, t2); j = 1, 2 determine distribution uniquely. �

Remark 3.2. Since the generalized interval entropy determines the distribution function uniquely
for each β, a natural question becomes apparent in this context is which β should be used in practice.
The choice of β depends on the situation. For example, IHβ

2 (X, t1, t2) with β = 2 could be used as
a measure of economic diversity in the context, of income analysis. For more details see Abraham and
Sankaran [1].

Theorem 3.3. The uniform distribution over (a, b), a < b can be characterized by decreasing
i) First kind of generalized interval entropy IHβ

1 (X, t1, t2) = (1− β)−1 (1− (t2 − t1))−(β−1),
ii) Second kind of generalized interval entropy IHβ

2 (X, t1, t2) = log (t2 − t1).
Proof. For the first part, if IHβ

1 (X, t1, t2) is decreasing in both coordinates t1 and t2, then g (xt2) = 0

and k (yt1) = 0 have unique solutions so g (x1) = 0 and k (y1) = 0. The other part is similar. �

Remark 3.3. If IHβ
1 (X, t1, t2) (respectively IHβ

2 (X, t1, t2)) is decreasing in both coordinates t1 and
t2 and g (x1) (respectively k (y1))6= 0, then g (xt2) (respectively k

(
yt1
)
)= 0 has two solutions for all

positive t1 and t2. From these solutions, at least one should be GFR.
Example 3.1. If X has beta distribution with density function f (t) = 2x, 0 ≤ x ≤ 1. Then for

β = 2, IHβ
1 (X, t1, t2) = 1 − 4(t32−t31)

3(t22−t21)
2 decreases for t1, t2 ∈ (0, 1). Also by considering h1 (t1, t2) as

GFR function of X, we have

x1

h1 (t1, t2)
=

2

3

[
t22

t1 (t1 + t2)
+ 1

]
> 1 (49)

for t1, t2 ∈ (0, 1). So, for every t1, t2 > 0, g (xt2) = 0 or k
(
yt1
)

= 0 has two positive solutions as
h1 (t1, t2) and h∗1 (t1, t2) such that h1 (t1, t2) < x1 < h∗1 (t1, t2) and therefore h∗1 (t1, t2) must be a GFR.

Again, for β = 2, IHβ
2 (X, t1, t2) = − log

4(t32−t31)
3(t22−t21)

2 , which is decreasing for t1, t2 ∈ (0, 1). Also,

x1

h1 (t1, t2)
=

2

3

[
t22

t1 (t1 + t2)
+ 1

]
> 1 (50)

for t1, t2 ∈ (0, 1). So, in the same manner, both roots of g (xt2) = 0 or k
(
yt1
)

= 0 are GFR.
IHβ

1 (X, t1, t2) and IHβ
2 (X, t1, t2) are shown in Figure 1.

Theorem 3.4. The distribution of X is double truncated exponential if and only if
IHβ

1 (X, t1, t2)(IHβ
2 (X, t1, t2))= c, where c is a constant.

Proof. As shown in (18), IHβ
1 (X, t1, t2) is constant. conversely, if IHβ

1 (X, t1, t2) = c, (31) and (32)
implies that

hβ1 (t1, t2) = h1 (t1, t2)
(

1− (β − 1) IHβ
1 (X, t1, t2)

)
(51)

and
hβ2 (t1, t2) = h2 (t1, t2)

(
1− (β − 1) IHβ

1 (X, t1, t2)
)
, (52)

then hβ1 (t1, t2) = hβ2 (t1, t2) = 0. Consequently, X is a double truncated exponential distribution. �
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Figure 1. The surface plot of the IHβ
1 (X, t1, t2) and IHβ

2 (X, t1, t2) in Example 3.1
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Theorem 3.5. If X has an absolutely continuous distribution function F (t), then a relationship of the
form

IHβ
1 (X, t1, t2) =

1

β − 1

(
1− 1

k

[
(1 + ct2)hβ2 (t1, t2)− (1 + ct1)hβ1 (t1, t2)

])
(53)

and

IHβ
2 (X, t1, t2) =

1

1− β
log

(
1

k

[
(1 + ct2)hβ2 (t1, t2)− (1 + ct1)hβ1 (t1, t2)

])
(54)

where k is constant holds for all (t1, t2) ∈ D if and only if X follows exponential with F̄ (x) = e−θx;

x > 0, θ > 0 for c = 0, Pareto distribution with F̄ (x) = (1 + px)−q;x > 0, p > 0, q > 0, for c > 0 and
finite range distribution with F̄ (x) = (1− ax)b; 0 < x < 1

a
, a > 0, b > 0 for c < 0.

Proof. Assume that the relation (53) holds. Then from the definitions of hi (t1, t2), and
IHβ

1 (X, t1, t2), we can write (53) as∫ t2

t1

(f (x))β dx =
1

k

[
(1 + ct2)fβ (t2)− (1 + ct1)fβ (t1)

]
(55)

differentiating with respect to ti, i = 1, 2 and simplifying we get

f́ (ti)

f (ti)
=

k − c
β(1 + cti)

. (56)

From (56) we get that X follows exponential, Pareto II and finite range distributions according as c = 0,

c > 0, and c < 0. The converse part is obtained in example 2.1. Proof for IHβ
2 (X, t1, t2) is similar. �

4. Some orders based on generalized interval entropy

In this section, we describe a few orders based on the generalized interval entropies and show their
properties.
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Proposition 4.1. Let X be an absolutely continuous random variable with density f(x) and
cumulative distribution function F (x). Then

(i) increasing h1 (t1, t2) in t1 implies

IHβ
1 (X, t1, t2) ≤ 1

β − 1

(
1− hβ1 (t1, t2)

)
(57)

and
IHβ

2 (X, t1, t2) ≥ 1

1− β
log hβ1 (t1, t2) (58)

(ii) decreasing h2 (t1, t2) in t2 implies

IHβ
1 (X, t1, t2) ≤ 1

β − 1

(
1− hβ2 (t1, t2)

)
(59)

and
IHβ

2 (X, t1, t2) ≥ 1

1− β
log hβ2 (t1, t2) (60)

Proof. By recalling (14),

IHβ
1 (X, t1, t2) =

1

β − 1

(
1−

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)

=
1

β − 1

(
1−

∫ t2

t1

(
f (x)

F (t2)− F (x)

F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)

=
1

β − 1

(
1−

∫ t2

t1

hβ1 (x, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)
. (61)

Because F (t2)−F (x)
F (t2)−F (t1)

≥ 0 and t1 < x implies that h1 (x, t2) ≥ h1 (t1, t2). Then

IHβ
1 (X, t1, t2) ≤ 1

β − 1

(
1−

∫ t2

t1

hβ1 (t1, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)

=
1

β − 1

[
1− hβ1 (t1, t2)

∫ t2

t1

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

]
≤ 1

β − 1

(
1− hβ1 (t1, t2)

)
. (62)

Also, recalling (15) and using same argument as above, we have

IHβ
2 (X, t1, t2) =

1

1− β
log

(∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)

=
1

1− β
log

(∫ t2

t1

hβ1 (x, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)
. (63)
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In the same manner F (t2)−F (x)
F (t2)−F (t1)

≥ 0 and t1 < x implies that h1 (x, t2) ≥ h1 (t1, t2). So

IHβ
2 (X, t1, t2) ≥ 1

1− β
log

(∫ t2

t1

hβ1 (t1, t2)

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)

=
1

1− β

[
log hβ1 (t1, t2) + log

(∫ t2

t1

(
F (t2)− F (x)

F (t2)− F (t1)

)β
dx

)]
≥ 1

1− β
log hβ1 (t1, t2) . (64)

The proof of the second part is similar. �

In the following example we consider the case of identical GFR function.
Example 4.1. For β = 2, if X has Uniform distribution on the interval (a, b) with f (x) = 1

b−a and
h1 (t1, t2) = h2 (t1, t2) = 1

t2−t1 , then IHβ
1 (X, t1, t2) = 1− 1

(t2−t1)
and IHβ

2 (X, t1, t2) = − log (t2 − t1).
By recalling Proposition 4.1, we see that relationship is valid.

It must be mentioned that in Proposition 4.1, first (second) kind of interval entropy depends on only
one of the GFR functions. Example 2.1 showed that IHβ

1 (X, t1, t2) (IHβ
2 (X, t1, t2)) depends on both

GFR function.
In the sequel, we give a definition in agreement with Khorashadizadeh et al. [10].
Definition 4.1. The random variable X is said to have
i) decreasing first kind interval entropy or (DFIE) property if and only if for fixed t2, IHβ

1 (X, t1, t2)

is decreasing with respect to t1.
ii) decreasing second kind interval entropy or (DSIE) property if and only if for fixed t2,

IHβ
2 (X, t1, t2) is decreasing with respect to t1.

This implies that IHβ
i (X, t1, t2); i = 1, 2, has DFIE(DSIE) if ∂IHβ

i (X,t1,t2)

∂t1
≤ 0.

Theorem 4.1. If X is a nonnegative random variable then IHβ
i (X, t1, t2); i = 1, 2 cannot be

increasing function with respect to t1 for any fixed t2.
Proof. First note that, using Hopital’s rule we have

lim
t1→t2

IHβ
1 (X, t1, t2) = lim

t1→t2

1

β − 1

(
1−

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)

= lim
t1→t2

1

β − 1
− lim

t1→t2

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

=
1

β − 1
− lim

t1→t2

1

β (β − 1)

(
f (t1)

F (t2)− F (t1)

)β−1

= −∞, (65)

Now, on the contrary suppose that IHβ
1 (X, t1, t2) is increasing in t1, then for all t1 ≤ t2,

IHβ
1 (X, t1, t2) ≤ IHβ

1 (X, t2, t2) = −∞ which contradicts the fact that IHβ
1 (X, t1, t2) ∈ R for all

(t1, t2) ∈ D.
In similar manner, we can conclude that IHβ

2 (X, t1, t2) is non increasing.
Theorem 4.2. Let X be a nonnegative random variable with probability density function f (x) and

cumulative function F (x) then
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i) IHβ
1 (X, t1, t2) ≤ 1

β − 1

1− 1

β

(
1 + ∂µ(t1,t2)

∂t1

µ (t1, t2)

)β−1
 (66)

and

ii) IHβ
2 (X, t1, t2) ≤ 1

β − 1
log

1

β

(
1 + ∂µ(t1,t2)

∂t1

µ (t1, t2)

)β−1

(67)

where

µ (t1, t2) = E (X − t|t1 < X < t2) =
1

F (t2)− F (t1)

∫ t2

t1

(z − t1) dF (z) (68)

is the doubly truncated mean residual life function
Proof. For proving item (i) note that,

∂IHβ
1 (X, t1, t2)

∂t1
=

1

β − 1

(
hβ1 (t1, t2)− βh1 (t1, t2)

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx

)
(69)

if substitute h1 (t1, t2) =
1+

∂µ(t1,t2)
∂t1

µ(t1,t2)
then

∂IHβ
1 (x, t1, t2)

∂t1
=

1

β − 1

(1 + ∂µ(t1,t2)
∂t1

µ (t1, t2)

)β

+ β

(
1 + ∂µ(t1,t2)

∂t1

µ (t1, t2)

)
IHβ

1 (X, t1, t2)

− β

β − 1

(
1 + ∂µ(t1,t2)

∂t1

µ (t1, t2)

)]
(70)

which satisfied the first result.
For proving (ii),

∂IHβ
2 (X, t1, t2)

∂t1
= βh1 (t1, t2)

∫ t2

t1

(
f (x)

F (t2)− F (t1)

)β
dx− hβ1 (t1, t2) ≤ 0. (71)

This satisfied the second result. �

Proposition 4.2. In Theorem 4.2, as t2 → ∞, we have that IHβ
i (X, t); i = 1, 2 is increasing

(decreasing) with respect to t, if and only if the following inequalities hold for all t > 0.

Hβ
1 (X, t) ≤ (≥)

1

β − 1
− hβ−1 (t)

β (β − 1)
, (72)

and

Hβ
2 (X, t) ≤ (≥)

hβ−1 (t)

β (β − 1)
, (73)

where h (t) = 1+µ́(t)
µ(t)

.
Proof. Using (6),

∂Hβ
1 (X, t)

∂t
=

1

β − 1

(
hβ (t)− βh (t)

∫ ∞
t

(
f (x)

F (t)

)β
dx

)
. (74)
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If Hβ
1 (X, t) is increasing in t, then Hβ

1 (X, t) ≥ 0 i.e Hβ
1 (X, t) ≥ 1

β−1

(
1− hβ−1(t)

β

)
. If Hβ

1 (X, t)

decreased in t, thenHβ
1 (X, t) ≤ 0 i.eHβ

1 (X, t) ≤ 1
β−1

(
1− hβ−1(t)

β

)
. Therefore the first result obtained.

The second part is similar.

5. Conclusion

In literature of information measures, generalized interval entropy is a famous concept which always
give a nonnegative uncertainty measure. But in many survival studies for modeling statistical data,
information about lifetime between two points is available. Considering, the concept of doubly
truncated (interval) entropy has been introduced. In this paper, several results on the first and second
kind of generalized interval entropies have been discussed. Also, it has been shown that generalized
interval entropies determine the distribution of random variables uniquely. Some orders based on given
uncertainty measures have been given.
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