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 Abstract: Minimal entropy martingale measure (MEMM) and geometric Levy process has been 
introduced as a pricing model for the incomplete financial market. This model has many good 
properties and is applicable to very wide classes of underlying asset price processes. MEMM is the 
nearest equivalent martingale measure to the original probability in the sense of Kullback-Leibler 
distance and is closely related to the large deviation theory .Those good properties has been explained. 
MEMM is also justified for option pricing problem when the risky underlying assets are driven by 
Markov-modulated Geometric Brownian Motion and Markov-modulated exponential Levy model. 
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1. Introduction 

The equivalent martingale measure method is one of the most powerful methods in the option pricing 
theory. If the market is complete, then the equivalent martingale measure is unique. On the other hand, 
in the incomplete market model there are many equivalent martingale measures. So we have to select 
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one equivalent martingale measure (EMM) as the suitable martingale measure in order to apply the 
martingale measure method. 
Over the past three decades, academic researchers and market practitioners have developed and 
adopted different models and techniques for option valuation. The path-breaking work on option 
pricing was done by Black and Scholes [5] and Merton [31]. Föllmer and Sondermann [18], Föllmer 
and Schweizer [19] and Schweizer [39] determined a martingale pricing measure by minimizing a 
quadratic function of the losses from an imperfectly hedged position. Davis [10] considered a 
traditional economic argument for valuation, namely the marginal rate of substitution, and determined 
a pricing measure for option valuation by solving a utility maximization problem. 
The well-known Black-Scholes model 

 
is a very good model for the option pricing, even so this model has many week points, for example the 
gap between the historical volatility and the implied volatility, fat tail property and asymmetry property 
of the distribution of the log returns, etc. And so we need to introduce new models which may illustrate 
those properties. The geometric Lévy process model is one of them. This model is an incomplete 
market model, so there are many equivalent martingale measures. As the first candidate for the 
equivalent martingale measure the minimal martingale measure was introduced in [19]. After that 
several candidates have been offered, for example the Esscher martingale measure [20], the variance 
optimal martingale measure [40], the minimal entropy martingale measure [32] and etc. 
In recent years, there is a considerable interest in the applications of regime switching models driven by 
a hidden Markov Chain process to various financial problems. For an overview of hidden Markov 
Chain processes and their financial applications, see Elliott et al. [11] and Elliott and Kopp [12]. Some 
works on the use of hidden Markov Chain models in finance include Elliott and van der Hoek [13] for 
asset allocation, Pliska [37] and Elliott et al. [14] for short rate models, Elliott and Hinz [16] for 
portfolio analysis and chart analysis, Guo [24] for option pricing under market incompleteness, 
Buffington and Elliott [6, 7] for pricing European and American options, Elliott et al. [17] for volatility 
estimation and the working paper by Elliott and Chan in 2004 for a dynamic portfolio selection 
problem. Much of the work in the literature focus on the use of the Esscher transform for option 
valuation under incomplete markets induced by Lévy-type processes. There is a relatively little amount 
of work on the use of the Esscher transform for option valuation under incomplete markets generated 
by other asset price dynamics, such as Markov regime switching processes. The market described by 
the Markov-modulated GBM model is incomplete in general, and, hence, the martingale measure is not 
unique. Instead of using the argument by Guo [24] that the market is completed by Arrow-Debreu 
securities, we can adopt the regime switching Esscher transform which is the modification of the 
random Esscher transform introduced by Siu et al. [41].It is assumed that the process of the parameters 
for the regime switching random Esscher transform is driven by the hidden Markov Chain model. By 
using the result in Miyahara [33], in [15] is justified the pricing result by the minimal entropy 
martingale measure, (MEMM). In this paper MEMM method is reviewed. Our paper organizes as 
follows: Section two presents the main idea of our paper. Geometric Lévy process and minimal entropy 
martingale measure pricing models is stated in section two. Section three considers Option pricing and 
MEMM under regime switching. The forth section is related to some other application of MEMM. 
Finally have been stated conclusion of the paper and proposes some topics for further investigation. 

2. Geometric Lévy process and minimal entropy martingale measure pricing models 

We assume that the value process of bond is given by 

; 
where r is a positive constant. A pricing model consists of the following two parts: 
(A) The price process St of the underlying asset. 
(B) The rule to compute the prices of options. 
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For the part (A) we adopt the geometric Lévy processes, so the part (A) is reduced to the selecting 
problem of a suitable class of the geometric Lévy processes. For the second part (B) we adopt the 
martingale measure method. then the price of an option X is given by . Our studies in this 

paper are carried on under such a framework. 
 
2.1 Geometric Lévy processes 

The price process  of a stock is assumed to be defined as what follows. We suppose that a probability 

space  and a filtration  are given, and that the price process  of a 
stock is defined on this probability space and given in the form 

 
 

Where  is a lévy process. Such a process  is named the geometric lévy process (GLP) and denoted 

the generating triplet of  by . 

The price process  has the following another expression 

 
where  is the Doléans-Dade exponential (or stochastic exponential) of 

, and  is a Lévy process corresponding to the original Lévy process . 

The generating triplet of , say , is 

 

 

 
 

2.1.1 Simple return process and compound return process 
As have be seen in the previous section, the GLP has two kinds of representation such that 

 
The processes  and  are candidates for the risk process. In [35] is shown that  

 
Thus, is the simple return process of  and  is the increment of log-returns and it is 

called the compound return process of . 

 

2.2  Equivalent martingale measures for GLP 
 The candidates for the suitable equivalent martingale measure are as follows. 
(1) Minimal Martingale Measure (MMM) (Föllmer-Schweizer(1991)) 
(2) Variance Optimal Martingale Measure (VOMM)(Schweizer(1995)) 
(3) Mean Correcting Martingale Measure (MCMM) 
(4) Esscher Martingale Measure (ESMM) (Gerber-Shiu(1994), B-D-E-S(1996)) 
(5) Minimal Entropy Martingale Measure (MEMM) (Miyahara(1996), Frittelli(2000)) 

(6) Utility Based Martingale Measure (U-MM) [35] 
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2.2.1 Esscher transforms and Esscher Martingale Measure (ESMM) 

Let , be a stochastic process. Then the Esscher transformed measure of P by the risk 

process  and the index process  is the probability measure of  defined by 

 
This measure transformation is called the Esscher transform by the risk process  and the index 

process . 
 

 In the above definitions, if the index process is chosen so that the  is a martingale measure 

of , then  is called the Esscher transformed martingale measure of  by the risk process 

, and it is denoted by or simply . 

 
2.2.2  Minimal entropy martingale measure (MEMM) 

If an equivalent martingale measure  satisfies 

 : equivalent martingale measure; 

then is called the minimal entropy martingale measure (MEMM) of . Where  is the 

relative entropy of  with respect to  

 
 

Proposition:  The simple return Esscher transformed martingale measure  of  is the minimal 

entropy martingale measure (MEMM) of . 
 
Remark: The uniqueness and existence theorems of ESMM and MEMM for geometric Lévy processes 
is proved in [34]. 
 
2.3 Comparison of ESMM and MEMM 
a)Corresponding risk process: The risk process corresponding to the ESMM is the compound return 
process, and the risk process corresponding to the MEMM is the simple return process. The simple 
return process seems to be more essential in the relation to the original process rather than the 
compound return process. 

b) Existence condition: For the existence of ESMM, , and MEMM,  , the following 

condition respectively is necessary. 

 

 
This means that the MEMM may be applied to the wider class of models than the ESMM. This 
difference does work in the stable process cases. 
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c) Corresponding utility function:The ESMM is corresponding to power utility function or logarithm 
utility function. On the other hand the MEMM is corresponding to the exponential utility function. the 
MEMM is very useful when one studies the valuation of contingent claims by (exponential) utility 
indifference valuation. 
 
2.3.1 Properties special to MEMM 
a) Minimal distance to the original probability: 
The relative entropy is very popular in the field of information theory, and it is called Kullback-Leibler 
Information Number or Kullback-Leibler distance. Therefore we can state that the MEMM is the 
nearest equivalent martingale measure to the original probability P in the sense of Kullback-Leibler 
distance. 
b) Large deviation property: 
The large deviation theory is closely related to the minimum relative entropy analysis, and the Sanov’s 
theorem or Sanov property is well-known. This theorem says that the MEMM is the most possible 
empirical probability measure of paths of price process in the class of the equivalent martingale 
measures [34]. 
c)convergence question:  
Several authors have proved in several settings and with various techniques that the minimal entropy 

martingale measure is the limit, as , of the so-called p-optimal martingale measures obtained by 

minimizing the f-divergence associated to the function . This line of research was initiated 
in [21], [23], and later contributions include [28], [30], [42]. 
 
Apart from the above, there are a number of other areas where the minimal entropy martingale measure 
has come up [44]; these include 

- option price comparisons [2], [3], [29], [26], [27], [36]; 
- generalizations or connections to other optimal ELMMs [1], [8], [9], [43]; 
- utility maximization with a random time horizon [4]; 
- good deal bounds  [29];  
- a calibration game [22]. 

 
3 Option pricing and Esscher transform under regime switching 

In [15] is considered the option pricing problem when the risky underlying assets are driven by 
Markov-modulated Geometric Brownian Motion (GBM). That is, the market parameters, for instance, 
the market interest rate, the appreciation rate and the volatility of the underlying risky asset, depend on 
unobservable states of the economy which are modeled by a continuous-time Hidden Markov process. 
The market described by the Markov-modulated GBM model is incomplete in general and, hence, the 
martingale measure is not unique. They adopt a regime switching random Esscher transform to 
determine an equivalent martingale pricing measure. As in Miyahara [33], they can justify their pricing 
result by the minimal entropy martingale measure (MEMM). 
 
3.1 The model 

Suppose  is a complete probability space, where  is a real-world probability measure. Let  

denote the time index set [0, T] of the model. Let  denote a standard Brownian Motion on 

. We assume that the states of the economy are modeled by a continuous-time hidden Markov 

Chain process  on  with a finite state space . Without loss of 

generality, we can identify the state space of  to be a finite set of unit vectors { }, 

where . We suppose that  and  are independent.  
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Write  for the generator  . Then, from Elliott et al. [11], we have the following 

semi-martingale representation theorem for   

 

where   is an -valued martingale increment process with respect to the filtration generated 

by  . We consider a financial model consisting of two risky underlying assets, namely a bank 

account and a stock, that are tradable continuously. The instantaneous market interest rate  

of the bank account is given by: 

 , 

where  with  for each  and  denotes 

the inner product in . In this case, the dynamics of the price process for the bank account are 
described by: 

 . 

We suppose that the stock appreciation rate and the volatility  of S also depend on 

 and are described by: 

 , , 

where   and   with  for each  The 

dynamics of the stock price process  are then given by the following Markov-modulated 

Geometric Brownian Motion: 

 . 

Let  denote the logarithmic return  from  over the interval . 
Then, the stock price dynamics can be written as: 

 , 

Where 

 
Let  denote the regime switching Esscher parameter, which can be written as follows: 

 
where  Then, the regime switching Esscher transform  on  with 
respect to a family of parameters  is given by: 

 
Since . 

The Radon-Nikodim derivative of the regime switching Esscher transform is given by: 
The Radon-Nikodim derivative of the regime switching Esscher transform is given by: 

 
Here, we justify the choice of the equivalent martingale measure  using the regime switching 
Esscher transform by minimizing the relative entropy with respect to P.  
Proposition:  Suppose there exists a βt such that the following equation is satisfied: 
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Let  be a probability measure equivalent to the measure  on  defined by the following Radon-
Nikodym derivative: 
 

 
 
Then, 

1.  is well defined and uniquely determined by the above Radon-Nikodym derivative, 

2.  is the MEMM for the Markov-modulated GBM. 
The proof of Proposition 3.1 is similar to the proof of Theorem 1 in Miyahara [33]. 
 
4. Some other application 

In [38], is extended the result of Fujiwara (2009) to a general Markov-modulated Lévy model whose 
the main feature is the presence of a modulator factor which changes the characteristic of the dynamics 
of risky asset under different regimes. Their main contribution is to give an expression, when it exists, 
for the minimal entropy equivalent measure for this class of models. That work generalizes some 
previous works in the literature which have treated either the exponential Lévy case or the exponential 
additive case. 
 
[9] deals with the existence and the explicit description of the minimal entropy–Hellinger local 
martingale density (called MH local martingale density). They show that this density is determined by 

point wise solution of equations in  depending only on the local characteristics of the discounted 
price process S. The uniform integrability as well as other integrability properties for the MH local 
martingale density is illustrated. 

4. Conclusions  

As we have seen, the MEMM has many good properties and seems to be superior to ESSMM from the 
theoretical point of view. And we can say that the [GLP & MEMM] model, which has been introduced 
in [21], is a strong candidate for the incomplete market model.  
Developing method is found to price options when the risky underlying assets are driven by Markov-
modulated Geometric Brownian Motion (GBM) based on a modification of the random Esscher 
transform by Siu et al. [41], namely the regime switching random Esscher transform. The choice of this 
martingale pricing measure is justified by the minimization of the relative entropy. Finally may explore 
the applications of these models to other types of exotic options or hybrid financial products, such as 
barrier options Asian options, game options and option-embedded insurance products, etc. 
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