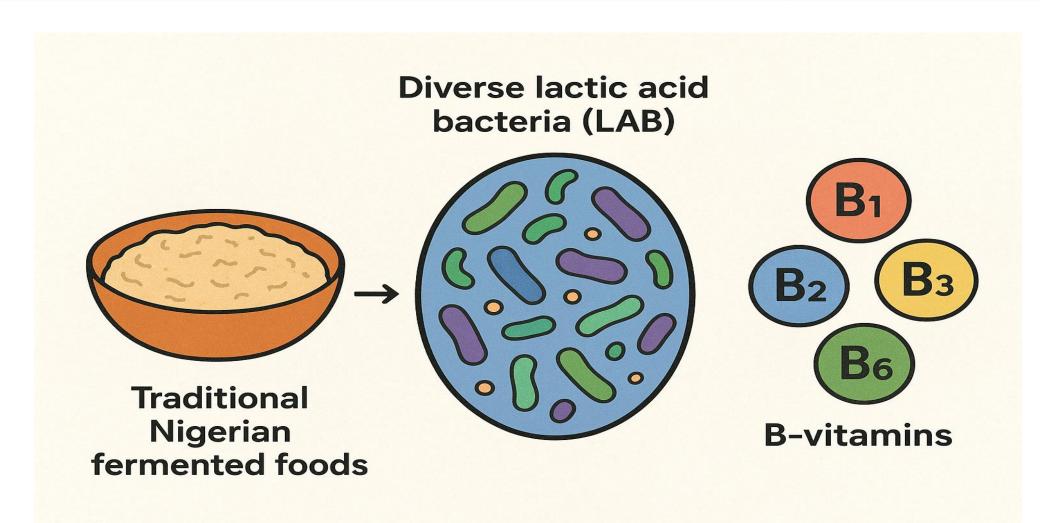
12-13 November 2025 | Online

Lactic acid bacteria from Nigerian traditional fermented foods screened for the production of selected B-vitamins in beverages


•Elizabeth Tomiwa Adesemoye*¹, Abiodun I. Sanni ², Omotade Richard Ogunremi³, Pasquale Russo⁴, Giuseppe Spano⁵ and Vittorio Capozzi⁶

- 1. Department of Microbiology, Federal University Oye Ekiti, Oye 370112, Ekiti State, Nigeria
- 2. Department of Microbiology, University of Ibadan, Ibadan 200005, Oyo State, Nigeria
- 3. Department of Biological Sciences, First Technical University, Ibadan, Oyo State. Nigeria
- 4. Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy

5.Department of Sciences of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, via Napoli, 25, 71122 Foggia, 6. institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, 71121 Foggia, Italy.

gia,

INTRODUCTION & AIM

This study aimed to isolate, screen, and apply LAB strains for riboflavin and cobalamin enrichment in fermented cow milk

METHOD

Sample Collection and Isolation: 107 LAB were isolated from Nigeria traditional fermented foods.

B-Vitamin Screening: Spectrophotometrically (Li et al., 2017). Riboflavin production was screened using the chemically defined riboflavin-free medium (CDRFM). Russo et al. (2021)

Molecular Characterization: GenBank (accession numbers OQ835356–OQ835379).

Quantitative Vitamin Analysis: Riboflavin; via fluorescence in 96-well plates. Cobalamin; HPLC (Hamzehlou et al., 2018).

Application in Fermented Milk: Riboflavin and cobalamin-producing LAB strains with probiotic and technological characteristics were inoculated into sterilized cow milk

RESULTS & DISCUSSION

98 riboflavin-producing LAB24 showed strong growth in CDRFM. (+++)

16 survived roseoflavin stress

14 showed positive color change in CDRFM.

7 isolates overproduced riboflavin.

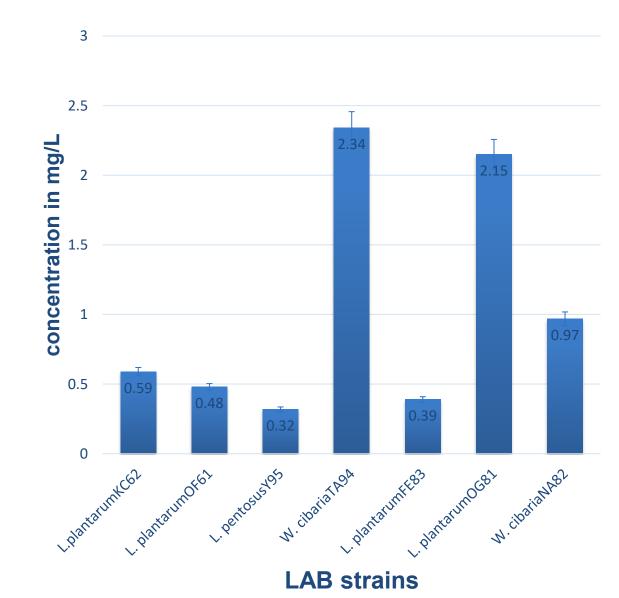


Figure 1. Riboflavin Overproducing Isolates

107 LAB isolates: 50 showed potential to produce cobalamin(B12); **13** produced cobalmin with highest concentration by *L. plantarum* KC62 (4.02±1.16μg/L). *W. cibaria* species TA94 and NA82 also produces cobalamin.

Table 1. Vitamin Analysis of the Fermented Milk.

Parameter	LAB	LAB	KC62	Control
	KC62	TA94	and	
			TA94	
Riboflavin	4.37	4.44	23.82	1.71
(B_2) mg/L				
Cobalamin	6.88	7.85	42.24	2.00
(B ₁₂) mg/L				

CONCLUSION

L. plantarum KC62 and W. cibaria TA94 significantly increased riboflavin and cobalamin levels in fermented cow milk, with co-culture yielding the highest vitamin concentrations.

Let's ferment some innovation

elizabeth.adesemoye@fuoye.edu.ng
https://orcid.org/0000-0002-5727-7612
https://www.researchgate.net/profile/Elizabeth-Adesemoye