

Programmable Morphology Shifts in Lactic Acid Bacteria: A Low-**Energy Harvesting Strategy for Functional Food Fermentation**

Rajeshwari Das Raima **Department of Genetic Engineering and Biotechnology** Jagannath University, Dhaka

Introduction

Aim

To investigate how programmable morphology shifts in LAB can enhance biomass recovery, reduce energy consumption, and preserve probiotic functionality during functional food fermentation, using quantitative analysis of aggregation and sedimentation behaviors reported across peer-reviewed studies.

Discussion

Programmable morphology transitions in LAB, such as cell aggregation and clumping, significantly improve biomass recovery efficiency achieving up to 96% auto-aggregation while maintaining high survival rates (87.2–96.7%) under simulated gastrointestinal conditions. This morphology-induced aggregation strategy can reduce energy consumption by over 50% compared to conventional centrifugation, without compromising probiotic integrity. The findings emphasize the potential of morphology engineering as a scalable, sustainable, and low-energy harvesting method for both dairy and plant-based functional food fermentations.

Method

Energy Consumption: Centrifugation vs Morphology-Based Recovery

Analysis

Figure 1. Predicted Recovery Kinetics for Different Morphology Biomass recovery increases sharply for Lactobacillus aggregates compared to planktonic cells. Aggregates with larger mean diameters (≥50 µm) show rapid sedimentation within 30 min, indicating morphology-driven recovery efficiency.

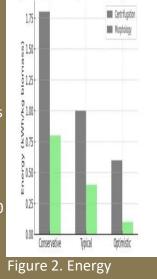
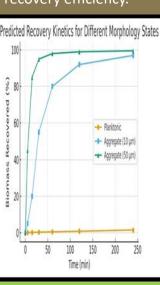



Figure 3. Aggregation vs Survival Relationship in Correlation between auto-aggregation and survival under simulated gastrointestinal conditions for L. *plantarum* and *L*. rhamnosus. Enhanced aggregation and hydrophobicity support higher survival and adhesion potential

Key Findings

- Auto-aggregation: Achieved up to 96% with enhanced hydrophobicity (31-83%).
- Probiotic survival: Maintained 87–96% under gastrointestinal conditions.
- Energy saving: Reduced recovery energy by ~50% compared to conventional methods.
- Microbial functionality: Lactobacillus plantarum and Lactobacillus rhamnosus adhesion intestinal preserved epithelial cells (up to 21.7%)

Future Work

Explore genetic and biochemical regulation of morphology shifts in LAB species. Apply this self-aggregating recovery model to other probiotic genera such as Bifidobacterium and Streptococcus thermophilus .Develop pilot-scale fermentation systems integrating morphology control for energy-efficient, large-scale probiotic production.

References

Ghosh, T., & Halder, D. (2020). Autoaggregation and hydrophobicity as key traits influencing probiotic potential in Lactobacillus species. Journal of Applied Microbiology, 128(2), 456–468

modeling of bacterial aggregation and sedimentation for sustainable bioprocessing. Computational Biology and Chemistry, 104, 107717

Singh, P., & Sharma, R. (2023). Computational Alvarez, B., Herrero, M., & Suárez, J. E. (2021). Morphological plasticity and stress adaptation in lactic acid bacteria: Implications for functional food design. Frontiers in Microbiology, 12, 658234.