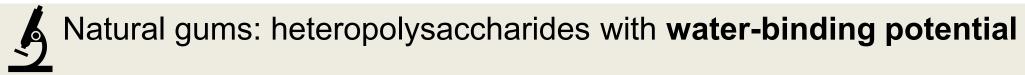
The 1st International Online Conference on Fermentation


12-13 November 2025 | Online

Suitability Of Natural Gums and Their Partial Hydrolysates as Prebiotics

Ajith Devika¹, Kumar Sandeep²

¹ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India ²APE Division, ICAR-National Institute of Secondary Agriculture, Ranchi, Jharkhand, India

INTRODUCTION & AIM

- They are widely used in the food industry to enhance the **texture** and sensory qualities of commercial preparations.
- As a food additive, they form the **soluble dietary fibre fraction**, making them a suitable candidate for **prebiotic studies**.
- Native gums, due to their high degree of polymerisation, can have:
- poor solubility
- high viscosity
- potential to cause gastric issues when a substantial amount is ingested.

Partial depolymerisation could address these issues and increase its prebiotic efficacy

Though many gums have proven prebiotic properties, not all gums can act as prebiotics for all probiotic strains

This research uses **biochemical and molecular studies** to understand **species and strain specificity** in gum utilisation.

METHOD

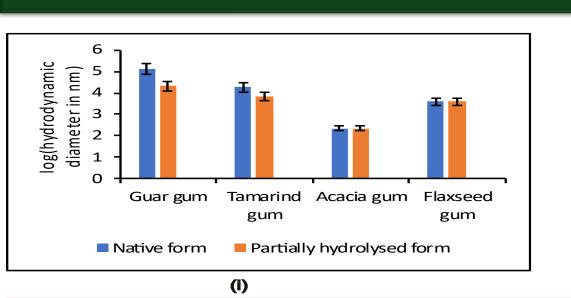
Natural gum	Main chain	Bacterial species	MTCC No.
Guar gum (GG)	Mannan	Lactobacillus plantarum	1746
Gum Arabic (AG)	Galactan	Lactobacillus rhamnosus	1423
Tamarind gum (TG)	Glucan	Lactobacillus brevis	1750
Flaxseed gum (FG)	Xylan	Lactobacillus bifermentans	3818
		Lactococcus lactis subsp. lactis	440
		Lactococcus lactis subsp. lactis	3041

Partial hydrolysis of natural gums using respective endohydrolases

Characterisation of prepared partial hydrolysates

- Partially hydrolysed guar gum (PHGG)
- Partially hydrolysed acacia gum (PHAG)
- Partially hydrolysed tamarind gum (PHTG)
- Partially hydrolysed flaxseed gum (PHFG)

Growth assays for the natural gums and prepared partial hydrolysates using probiotic strains


Analysis of the biochemical and molecular basis of substrate preference

In silico characterisation of pathway entry points

Quantitative real-time PCR analysis of enzymes present at pathway entry points

RESULTS & DISCUSSION

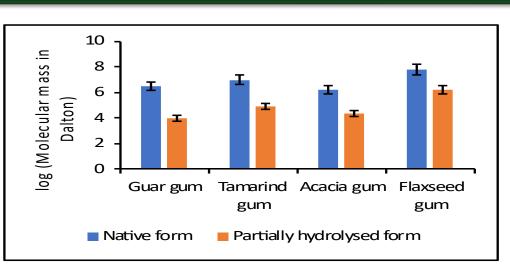
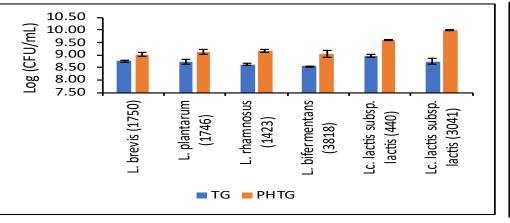
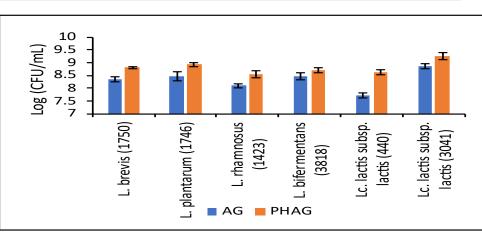
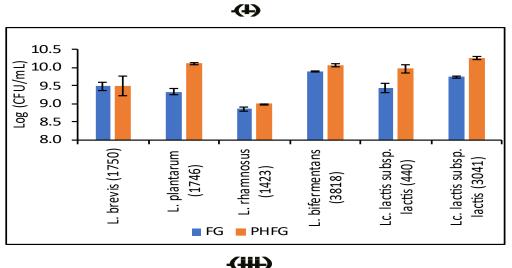





Fig. 1 DLS and SLS reading of natural gums and their partial hydrolysates

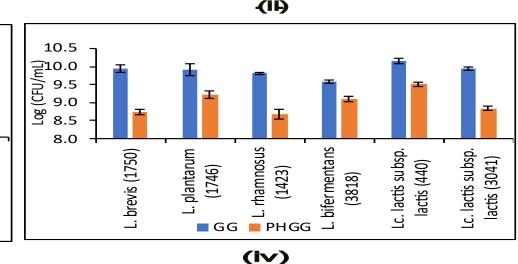
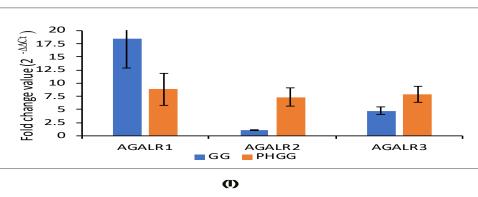
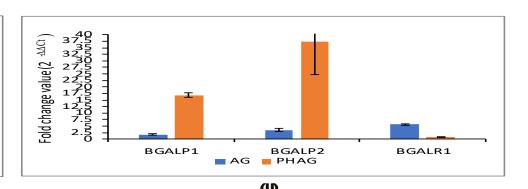




Fig.2. Growth assay in terms of log(CFU/mI) with native gums and their partial hydrolysates

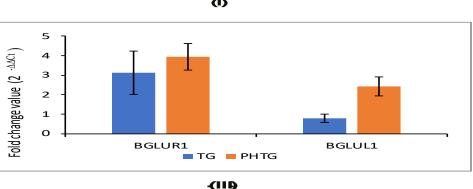


Fig.3. Comparative fold change in expression of (i) α -galactosidase, (ii) β -galactosidase and (iii) β -glucosidase when provided with GG/PHGG, AG/PHAG and TG/PHTG, respectively

- In general, all partially hydrolysed natural gums (PHNG), except PHGG, boosted the growth of selected LAB than native counterparts, hinting towards their better access and uptake by bacteria
- qRT-PCR data showed overexpression of all glycosyl hydrolases analysed
- A fold change of 18.43 \pm 5.62 in one α -galactosidase isozyme in *L. rhamnosus* with GG provides insights into the superior utilisation of the native gum

CONCLUSION

- Partial depolymerisation increased the fermentability of the natural gums (except for guar gum) and thereby their prebiotic efficacy
- Bacterial ability to use a specific substrate is a factor of strain-specific expression of respective endohydrolases
- PHAG and PHTG in combination with L.. plantarum 1746 and L.. lactis subsp. lactis 3041, respectively, are potential candidates for synbiotics development

FUTURE WORK / REFERENCES

 Modrackova, N., Makovska, M., Mekadim, C., Vlkova, E., Tejnecky, V., Bolechova, P., & Bunesova, V. (2019). Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. *Bioactive Carbohydrates* and Dietary Fibre, 20, 100199