

Proceeding Paper

Structure-Based Design and Synthesis of Novel Hybrid Molecules Derived from Anthranilic Acid as Drug Candidates †

Miglena Milusheva 1,2,*, Vera Gledacheva 3, Mihaela Stoyanova 2, Mina Todorova 2, Iliyana Stefanova 3 and Stoyanka Atanasova Nikolova 2

- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- ² Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; miglena.milusheva@uni-plovdiv.bg (M.S.); minatodorova@uni-plovdiv.bg (M.T.); stoyanova@uni-plovdiv.bg (S.A.N.); tanya@uni-plovdiv.bg
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; vera.gledacheva@mu-plovdiv.bg (V.G.); iliyana.stefanova@mu-plovdiv.bg (I.S.)
- * Correspondence: miglena.milusheva@mu-plovdiv.bg
- † Presented at the 29th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-29); Available online: https://sciforum.net/event/ecsoc-29.

Abstract

Hybrid molecules, integrating multiple pharmacophores within a single scaffold, represent a modern strategy in drug discovery, offering improved selectivity and safety. Anthranilic acid is a versatile building block with diverse biological activities. Here, we designed and synthesized novel anthranilic acid-based hybrids with enhanced pharmacokinetic potential. Cheminformatics tools guided library design, followed by amide bond formation between anthranilic acid derivatives and substituted 2-phenylethylamines. Purification and structural characterization were achieved via NMR, IR, and HRMS. The compounds exhibited favorable predicted ADME/Tox profiles and synthetic accessibility. These results provide a foundation for further biological evaluation toward therapies for smooth muscle dysfunction and inflammation.

Keywords: anthranilic acid derivatives; hybrid molecule synthesis; amide bond formation; structure-based design; 2-phenylethylamines; computational chemistry

Academic Editor(s): Name

Published: date

Citation: Milusheva, M.;
Gledacheva, V.; Stoyanova, M.;
Todorova, M.; Stefanova, I.;
Nikolova, S.A. Structure-Based
Design and Synthesis of Novel
Hybrid Molecules Derived from
Anthranilic Acid as Drug
Candidates. Chem. Proc. 2025, volume number, x.

https://doi.org/10.3390/xxxxx

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

Modern drug discovery increasingly relies on molecular hybridization, a strategy in which two or more pharmacophoric elements are combined into a single scaffold (Figure 1). This approach enables modulation of multiple biological targets simultaneously, potentially yielding compounds with improved selectivity, synergistic efficacy, and reduced side effects, compared to single-target agents. Recent reviews have highlighted that hybrid molecules are especially promising in tackling complex, multifactorial diseases such as inflammation, cancer, metabolic syndrome, and neurodegeneration [1,2].

Anthranilic acid is an advantaged scaffold in medicinal chemistry, on account of its dual reactive groups ($-NH_2$ and -COOH) which allow for diverse derivatization. Various recent studies report anthranilic acid derivatives with potent biological activities, including anti-inflammatory, antimicrobial, anticonvulsant, enzyme inhibition, and receptor modulatory effects [3,4]. For example, novel anthranilic acid hydrazones have

Chem. Proc. 2025, x, x https://doi.org/10.3390/xxxxx

shown potent inhibition of cholinesterases and α -glycosidase with favourable ADMET profiles [5]. A very recent work describes hybridization of quinoline with anthranilic acid to produce compounds with strong in vitro and in vivo anti-inflammatory effects and good drug-likeness [6].

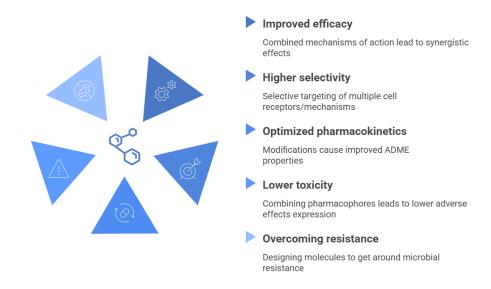


Figure 1. Advantages of hybrid molecules in novel drug design (visualized with Napkin AI).

In this context, our study aims to design and synthesize novel anthranilic acid-based hybrid molecules that not only retain the broad spectrum of biological activities associated with anthranilic analogues, but also exhibit improved pharmacokinetic and pharmacodynamic properties via rational hybrid design and in silico filtering.

2. Materials and Methods

A combination of cheminformatics tools was used to guide the design of a focused library of target compounds. Publicly available software products (SwissADME [7], PASS Online [8], ProTox 3.0 [9]) were used for the in silico screening to identify the most favourable candidates for synthesis. The main criteria in this process included properties such as synthetic availability, Lipinski's rule of 5, gastrointestinal absorption, blood-brain barrier (BBB) permeability, antispasmodic activity, and toxicity.

The synthetic procedure (Scheme 1) relied on an efficient ring-opening reaction of isatoic anhydride with substituted 2-phenylethylamines at room temperature [10–14]. Obtaining the desired hybrids (3–5) was monitored chromatographically (TLC). The hybrids were acylated with various alkyl- and aryl-substituted acyl chlorides ($R_3 = CH_3$, C_6H_5 , $CH_2-C_6H_5$, CH_4 , $CH(Cl)C_6H_5$), yielding the desired diamides 6–8 a–e with high purity.

All compounds were purified and characterized using standard spectroscopic techniques, including NMR, IR, and HRMS, and melting point temperature determination.

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array}$$

Scheme 1. Synthetic procedure for obtaining the desired hybrid diamides 6-8 a-e.

3. Results and Discussion

The applied in silico approaches, including cheminformatics and ADME/Tox predictions, generated a comprehensive dataset on the physicochemical, pharmacokinetic, and toxicological profiles of the tested structures. Based on the analysis of key parameters, three phenylethylanthranilamide compounds and their diamide derivatives were identified as the most promising candidates.

Lipophilicity, a major determinant of oral bioavailability, was found to be below the critical threshold of $\log P = 5$. This finding is consistent with Lipinski's Rule of Five, which states that orally active drugs are more likely to succeed when not violating more than one of the following criteria: molecular weight ≤ 500 Da, $\log P \leq 5$, ≤ 5 hydrogen bond donors, and ≤ 10 hydrogen bond acceptors [15]. Compliance with these guidelines is crucial, since a significant proportion of drug candidates fail at early stages of development due to poor ADME properties [16].

Further ADME predictions revealed high gastrointestinal absorption and bloodbrain barrier (BBB) permeability. While BBB penetration is advantageous in the context of central nervous system drug discovery, particularly for neurodegenerative disorders, it also raises safety concerns due to the risk of neurotoxicity [17].

Preliminary toxicity assessment placed the compounds in toxicity class 4, with calculated LD50 values ranging from 1000 to 2025 mg/kg. The SwissADME tool (Figure 2) confirmed overall organ safety, yet predicted approximately 70% probability of respiratory and neurotoxicity. In this study, such findings are interpreted as potentially favorable, since BBB penetration is a desired feature for the conceptualized therapeutic application. Comparable or even higher toxicity levels have been reported for clinically used drugs in this therapeutic area, suggesting that the investigated structures remain within an acceptable safety range for further pharmacological exploration [18,19].

Application of the synthetic methodology allowed for the efficient synthesis of three hybrid molecules and fifteen diamides in total, with practical yields ranging between 78–83% [12–14].

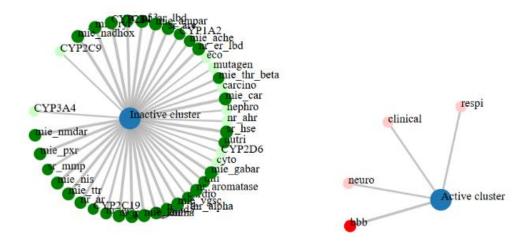


Figure 2. Toxicity calculation results for compound 6b, obtained with SwissADME.

4. Conclusions

The resulting hybrid structures integrate multiple pharmacophores and demonstrate favorable predicted ADME properties and toxicity. The synthetic procedures were efficient and reproducible, yielding structurally confirmed compounds ready for further biological exploration.

The generated hybrid structures show promising in silico drug-likeness and synthetic accessibility. This work provides a strong foundation for developing new small molecules aimed at treating disorders involving smooth muscle dysfunction and inflammation. The biological effects of all hybrids are to be thoroughly studied as a next step of the novel drug candidates design and development project.

Author Contributions: Conceptualization, I.S. and S.A.N.; methodology, S.A.N.; software, V.G. and M.M.; investigation, M.M., M.S., M.T., V.G.; resources, M.M.; data curation, M.M.; writing—original draft preparation, M.M. and V.G.; writing—review and editing, S.A.N. and I.S.; visualization, M.M., V.G., M.T.; supervision, S.A.N. and I.S.; project administration, M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: This study is supported by the Bulgarian Ministry of Education, National Program "Young Scientists and Postdoctoral Students−2", Project № MUPD-HF-017.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADME Absorption, distribution, metabolism, excretion

Tox Toxicity

BBB Blood-brain barrier IR Infrared spectroscopy

NMR Nuclear magnetic resonance spectroscopy

HRMS High resolution mass spectrometry
TLC Thin-layer chromatography

References

- Morais, T.S. Recent Advances in the Development of Hybrid Drugs. *Pharmaceutics* 2024, 16, 889. https://doi.org/10.3390/pharmaceutics16070889.
- Prasher, P.; Sharma, M. Medicinal Chemistry of Anthranilic Acid Derivatives: A Mini Review. *Drug Dev. Res.* 2021, 82, 945–958. https://doi.org/10.1002/ddr.21842.
- 3. Chandrashekhara Kumar, B.; Bhagwath, A.A.; Chandrashekar, K.S. Pharmaceutical Chemistry of Anthranilic Acid Derivatives: A Brief Review. *Int. J. Pharm. Sci.* **2024**, *2*, 2143–2174. https://doi.org/10.5281/zenodo.13131906.
- 4. Nasr, T.M.; Aboshanab, A.M.; Abouzid, K.A.M.; Zaghary, W.A. Hands-On Synthetic Approaches and Biological Activities of Anthranilic Acid Derivatives: A Mini-Review. *Egypt. J. Chem.* **2023**, *66*, 329–343. https://doi.org/10.21608/ejchem.2022.148409.6426.
- 5. Tokalı, F.S.; Taslimi, P.; Taskin-Tok, T.; Karakuş, A.; Sadeghian, N.; Gulçin, İ. Novel Hydrazones Derived from Anthranilic Acid as Potent Cholinesterases and α-Glycosidase Inhibitors: Synthesis, Characterization, and Biological Effects. *J. Biochem. Mol. Toxicol.* **2024**, *38*, e23521. https://doi.org/10.1002/jbt.23521.
- Siddique, S.; Hussain, K.; Shehzadi, N.; Arshad, M.; Arshad, M.N.; Iftikhar, S.; Saghir, F.; Shaukat, A.; Sarfraz, M.; Ahmed, N. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Quinoline-Anthranilic Acid Hybrids as Potent Anti-Inflammatory Drugs. Org. Biomol. Chem. 2024, 22, 3708–3724, https://doi.org/10.1039/d4ob00040d.
- 7. SwissADME. Available online: http://www.swissadme.ch/ (accessed on 26 September 2025).
- 8. PASS Online. Available online: https://way2drug.com/PassOnline/ (accessed on 26 September 2025).
- 9. ProTox 3.0. Available online: https://tox.charite.de/protox3/ (accessed on 26 September 2025).
- Rivero, I.A.; Espinoza, K.; Somanathan, R. Syntheses of Quinazoline-2,4-dione Alkaloids and Analogues from Mexican Zanthoxylum Species †. Molecules 2004, 9, 609–616. https://doi.org/10.3390/90700609.
- 11. Zhang, S.; Tan, Z.; Xiong, B.; Jiang, H.F.; Zhang, M. Transition-Metal-Catalyst-Free Synthesis of Anthranilic Acid Derivatives by Transfer Hydrogenative Coupling of 2-Nitroaryl Methanols with Alcohols/Amines. *Org. Biomol. Chem.* **2018**, *16*, 531–535. https://doi.org/10.1039/c7ob02919e.
- Milusheva, M.; Stoyanova, M.; Gledacheva, V.; Stefanova, I.; Todorova, M.; Pencheva, M.; Stojnova, K.; Tsoneva, S.; Nedialkov, P.; Nikolova, S. 2-Amino-N-Phenethylbenzamides for Irritable Bowel Syndrome Treatment. *Molecules* 2024, 29, 3375. https://doi.org/10.3390/molecules29143375.
- Stoyanova, M.; Milusheva, M.; Gledacheva, V.; Stefanova, I.; Todorova, M.; Kircheva, N.; Angelova, S.; Pencheva, M.; Stojnova, K.; Tsoneva, S.; et al. Spasmolytic Activity and Anti-Inflammatory Effect of Novel Mebeverine Derivatives. *Biomedicines* 2024, 12, 2321. https://doi.org/10.3390/biomedicines12102321.
- 14. Milusheva, M.; Todorova, M.; Gledacheva, V.; Stefanova, I.; Feizi-Dehnayebi, M.; Pencheva, M.; Nedialkov, P.; Tumbarski, Y.; Yanakieva, V.; Tsoneva, S.; et al. Novel Anthranilic Acid Hybrids—An Alternative Weapon against Inflammatory Diseases. *Pharmaceuticals* **2023**, *16*, 1660. https://doi.org/10.3390/ph16121660.
- 15. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. *Adv. Drug Deliv. Rev.* **2001**, 46, 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0.
- 16. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. *J. Med. Chem.* **2002**, *45*, 2615–2623. https://doi.org/10.1021/jm020017n.
- 17. Pardridge, W.M. The Blood–Brain Barrier: Bottleneck in Brain Drug Development. *NeuroRx* **2005**, 2, 3–14. https://doi.org/10.1602/neurorx.2.1.3.
- 18. Yang, B.; Li, H.; Zhang, T.; Wang, Z.; Li, H.; Zhang, Y. Nonlinear and Mixed Inhibitory Effect of Matrine on the Cytotoxicity of Oligomeric Amyloid-β Protein. *Neurochem. Int.* **2020**, *137*, 104746. https://doi.org/10.1016/j.neuint.2020.104746.
- Shukla, A.K.; Nilgirwar, P.S.; Bali, S.D. Current pharmacological treatments for neurodegenerative diseases. In *The Neurodegeneration Revolution*; Sastri, T.; Osmani, R.A.M.; Singh, E.; Dutta, S., Eds.; Elsevier: Amsterdam, NL, USA, 2025; pp. 117–126. https://doi.org/10.1016/B978-0-443-28822-7.00005-2.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.