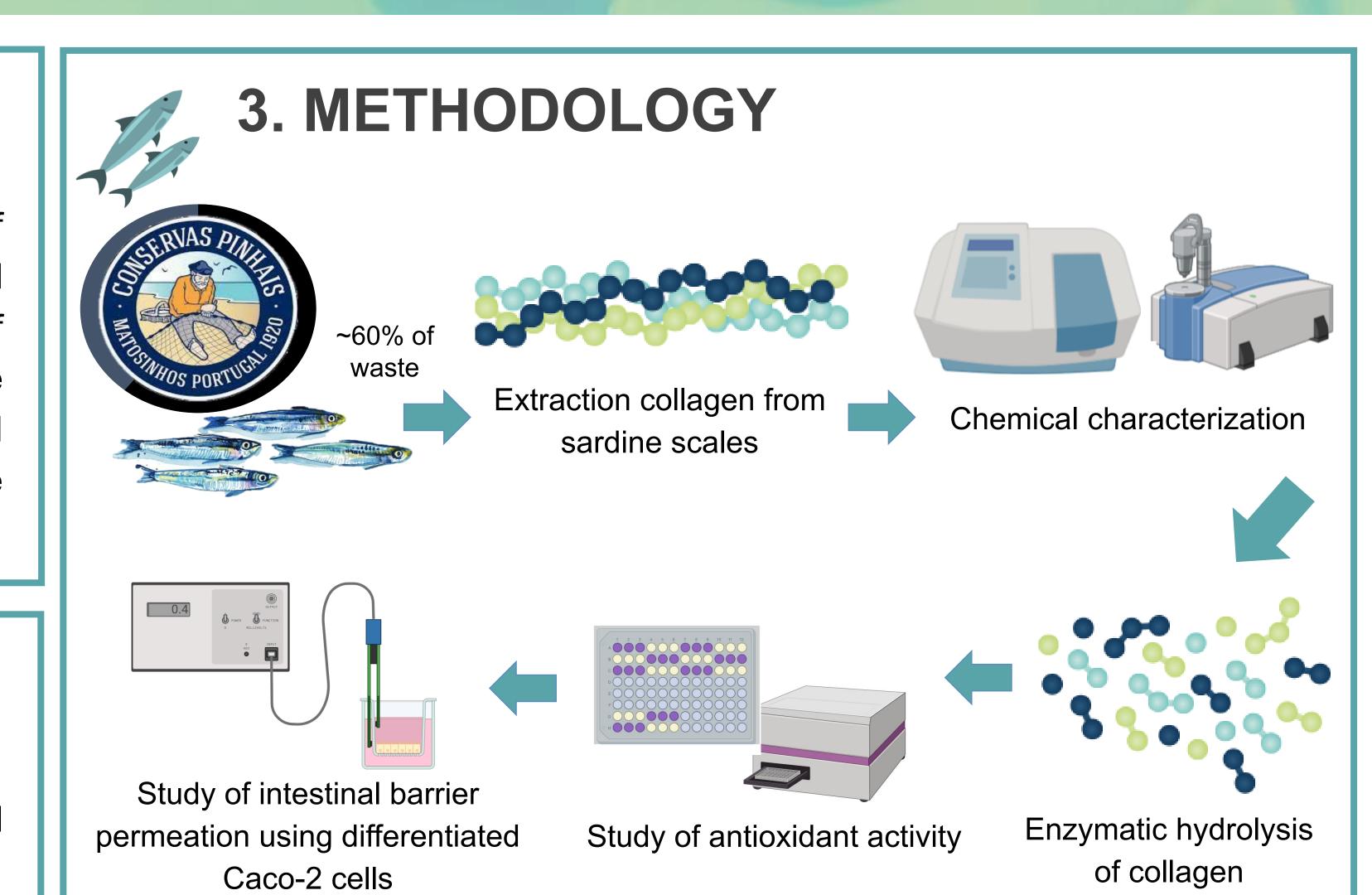


Marine By-Product Valorization: Collagen Extraction from Sardine Scales for Circular Cosmetics and Nutrition

Rebeca André^{1,2*}, Márcia Santos Filipe¹, Marco Ferreira³, Marta M. Alves⁴, Vânia André⁴, Rita Pacheco^{2,5}, Patrícia Rijo^{1,2,6}

¹CBIOS- Universidade Lusófona's Research Center for Biosciences & Health Technologies, Portugal. ²Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, Portugal. ³Pinhais & Cia, Lda, Portugal. ⁴Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Portugal. ⁶Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Portugal.


1. INTRODUCTION

In recent years, there has been a significant increase in the amount of waste generated by the canning industry. This situation has sparked growing interest in the use of marine by-products for the extraction of bioactive compounds¹. This approach not only helps reduce waste but also enables the development of sustainable cosmetics and supplements, adding value to resources that would otherwise be discarded.

2 OBJECTIVE

Extraction of collagen from sardine scales from the canning industry, contributing to the development of a sustainable pharmaceutical market and the circular blue economy.

4. RESULTS AND DISCUSSION

Yield of extraction

Acid extraction (ASC):

0,18 %

Pepsin extraction (PSC):

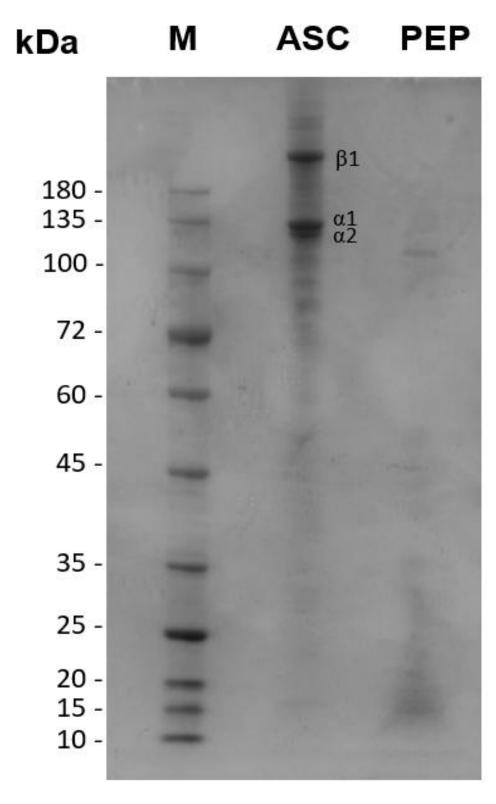

0,55 %

Figure 1. Collagen extracted with acid

Chemical characterization Confirmation of collagen extraction² **A** 1.8 -ASC extract —PSC extract **Amide I Peak characteristic of Amide II** collagen type I **Amide III Amide A** ₹ 0.6 200 300 600 400 500 cm⁻ Wavelength (nm)

Figure 2. UV-vis (A) and FTIR (B) do extrato spectra of the ASC and PSC extracts

Enzymatic hydrolysis with papain



Figure 4. Structure of type

Figure 3. SDS-PAGE of the collagen extract

(ASC) and peptides (PEP).

Antioxidant activity - DPPH

Table 1. Antioxidant activity by the DPPH method of collagen samples (5 mg/mL) and quercetin (0.1 mg/mL).

Sample	Antioxidant Activity (%)
ASC Extratc	5,20 ± 0,38
Collagen peptids	18,91 ± 0,50
Quercetin	95,35 ± 0,82

A direct relationship is observed between the molecular weight of collagen and its antioxidant capacity.

Permeation of intestinal barrier

The peptides showed moderate intestinal permeability in the in vitro model with differentiated Caco-2 cells.

Tabel 2. Apparent permeability coefficient (Papp: cm/s) of collagen peptides (0.5 mg/mL) and caffeine (0.8 mg/mL) using differentiated Caco-2 cells.

Samples	Apparent permeability coefficient (cm/s)
Collagen peptides	5,25 x 10 ⁻⁶
Caffein	26,54 x 10 ⁻⁶

6. CONCLUSION

- This study demonstrates the potential of collagen extracted from sardine scales as a sustainable source of type I collagen, in line with the principles of the blue economy.
- By promoting research and responsible utilization of marine resources, it is possible to drive the development of new pharmaceutical products that benefit both health and the environment.

ocean to This w

This work was supported by Fundação para a Ciência e Tecnologia (FCT, Portugal) through projects UIDP/04567/2020 and UIDB/04567/2020, and by ILIND through SeedFunding project COFAC/ILIND/CBIOS/1/2022 - Blue4Skin

Acknowledgments

