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Abstract 

The Aurora kinase A (Aurora-A), overexpressed in cancer cells, represents a promising 

anti-cancer therapeutic target due to its role in mitotic progression and chromosome in-

stability [1]. Aurora-A contains a recently described drug pocket within its Targeting Pro-

tein for Xklp2 (TPX2) interaction site, offering a promising target for small-molecule dis-

ruption and selective inhibition [2]. In this study, 1281 natural products from Argentina’s 

database (NaturAr), encompassing chemically diverse and structurally rich metabolites, 

were evaluated using a machine learning model based on molecular fingerprints and var-

iational autoencoders (VAE) to predict inhibitory activity with high-throughput efficiency 

[3,4]. From this initial screening, 624 compounds were classified as active type against 

Aurora-A, and subsequently subjected to molecular docking using FRED software 

(v4.3.0.3) against the Aurora-A crystal structure (PDB: 5OSD), focusing on the TPX2-bind-

ing interface [2,5]. Among them, 117 compounds with various scaffolds showed better 

binding scores than the co-crystallized ligand, highlighting their potential to interact with 

the druggable target site through stable and specific molecular contacts. This workflow 

effectively prioritized compounds of natural origin from Argentina for the discovery of 

new Aurora-A kinase inhibitors, demonstrating the value of integrating AI-driven screen-

ing with structure-based modeling. These findings highlight the identification of novel 

scaffolds with high binding potential, offering promising starting points for the develop-

ment of selective Aurora-A inhibitors. 

Keywords: aurora kinase A; TPX2; machine learning; molecular docking; Argentinian  

natural products; anti-cancer compounds 

 

1. Introduction 

Cancer remains a leading cause of mortality worldwide, with dysregulation of cell 

cycle progression and mitotic machinery contributing significantly to tumor development 

and progression [6]. Aurora kinase A (Aurora-A), a serine/threonine kinase overex-

pressed in various cancers, plays a critical role in mitotic spindle assembly, centrosome 

maturation, and chromosome segregation, making it an attractive therapeutic target for 
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anti-cancer drug discovery [7]. Inhibition of Aurora-A disrupts mitotic progression, in-

duces apoptosis, and reduces chromosome instability in malignant cells [8]. A recently 

identified druggable pocket at the Aurora-A–Targeting Protein for Xklp2 (TPX2) interac-

tion site offers a novel opportunity for selective inhibition by small molecules, potentially 

minimizing off-target effects associated with ATP-competitive inhibitors [9]. 

Natural products from diverse ecosystems, such as those found in Argentina, repre-

sent a rich source of chemically diverse scaffolds with potential bioactivity against cancer 

targets [10]. The NaturAr database, comprising approximately 1281 Argentinian natural 

products, provides a valuable repository for virtual screening efforts [11]. Computational 

approaches, including machine learning (ML) models and molecular docking, have revo-

lutionized drug discovery by enabling high-throughput identification of promising can-

didates while reducing experimental costs and time [12]. ML models based on molecular 

fingerprints and variational autoencoders (VAE) can efficiently predict inhibitory activity, 

while structure-based docking refines hits by evaluating binding affinities and interac-

tions within target pockets [13,14]. 

In this study, we screened the NaturAr database using a concatenated computational 

protocol. Firstly, we implemented an ML model with a VAE architecture to classify com-

pounds as potential Aurora-A inhibitors. Then we docked the active-predicted molecules 

against the TPX2-binding interface of Aurora-A (PDB: 5OSD), identifying compounds 

with superior binding scores compared to the co-crystallized ligand of the target protein. 

Molecular dynamics simulations further assessed the stability of top hits, revealing favor-

able RMSD profiles. This integrated workflow highlights the potential of Argentinian nat-

ural products as novel Aurora-A inhibitors, paving the way for further experimental val-

idation and development of selective anti-cancer therapies. 

2. Materials and Methods 

2.1. Compounds Database 

The NaturAr database (https://naturar.quimica.unlp.edu.ar/es/), a collaborative, 

open-source repository cataloging 1281 natural products from Argentinian biodiversity 

to date, was utilized for this study [15]. Structures were provided in SMILES format (ac-

cessed on 15 May 2023). 

2.2. Machine Learning Models 

The dataset for training the models was obtained from PubChem BioAssay AID 

1803719, which documents the inhibition of Aurora A kinase (UniProt ID: O14965). Com-

pounds were classified as “active” (IC50 ≤ 10 μM) or “inactive” based on dose-response 

curves (accessed on 20 May 2023). Molecular representations needed for model imple-

mentation, including Morgan fingerprints (2,048-bit circular patterns) and MACCS keys 

(166 structural fragments), were computed using RDKit [16]. The VAE architecture, fea-

turing an encoder with two hidden layers (256 → 128 neurons, ReLU activation) that com-

presses inputs into a 32-dimensional latent space and a symmetric decoder reconstructing 

the original features, was trained for 100 epochs using mean squared error loss to reduce 

dimensionality [17]. The VAE’s latent representations then served as optimized inputs for 

downstream classifiers—RBF-kernel SVM, class-weighted Random Forest, and AUC-op-

timized XGBoost—further optimized via Bayesian optimization (25 iterations) with strat-

ified 5-fold cross-validation [18]. The best model was selected and applied to the NaturAr 

database, identifying compounds as potential Aurora-A inhibitors (probability > 0.5/best 

scoring than A9B). 
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2.3. Protein Preparation and Molecular Docking 

The crystal structure of Aurora-A kinase in complex with the co-crystallized ligand 

A9B at the TPX2-binding interface (PDB: 5OSD, http://www.rcsb.org, accessed on 22 May 

2023) was retrieved from the Protein Data Bank [19]. Preparation involved removing wa-

ter molecules and non-essential ions, followed by protonation using Make Receptor 

v4.3.0.3 software, OpenEye Scientific. The binding pocket was defined around A9B. 

SMILES representations of ML-predicted active ligands were converted into 3D 

structures using OMEGA v5.0.0.3 software in “pose” mode, generating up to 800 conform-

ers per molecule. Molecular docking was performed using FRED software v4.3.0.3 Open-

Eye Scientific, with the Chemgauss4 scoring function [20]. The protocol was validated by 

redocking A9B, and a total of 104,949 molecules (up to 800 possible conformers per 624 

active-predicted/A9B molecules) were docked. 

2.4. Molecular Dynamics Simulations 

The top three docked-protein complexes and the 9AB-protein complex underwent 25 

ns MD simulations using NAMD2 v2.14 (http://www.ks.uiuc.edu/Research/namd/), with 

the AMBER ff14SB forcefield (protein), GAFF (ligands), and TIP3P water models. Systems 

were solvated in a padded cubic box, neutralized with NaCl, and energy-minimized for 

1000 steps [21]. Production simulations were carried out in the NPT ensemble at 310 K 

and 1 atm, using a 1 fs time step and SHAKE constraints, with coordinates saved every 

5000 steps (0.005 ns intervals). 

RMSD trajectories were calculated and analyzed using VMD v1.9.4 

(http://www.ks.uiuc.edu/Research/vmd/), and plots were generated with Python v3.12.3 

(https://www.python.org) with the pandas v2.2.2 and matplotlib v3.9.2 libraries. The 

binding free energy between ligands and Aurora A was evaluated using the molecular 

mechanics Poisson–Boltzmann surface area (MM/PBSA) approach, applied to previously 

equilibrated molecular dynamics trajectories [22]. Representative sampling intervals from 

the equilibrated complexes were selected, and interaction energies were calculated using 

molecular force fields and an implicit solvation model under physiological ionic condi-

tions. 

3. Results and Discussion 

3.1. Machine Learning Model Performance 

Three molecular representations (Morgan fingerprints, MACCS keys, and a hybrid 

of both) were evaluated with SVM, Random Forest, and XGBoost classifiers after dimen-

sionality reduction using a VAE. The performance metrics are presented in Table 1. The 

Morgan fingerprints-SVM model emerged as the optimal choice based on rigorous per-

formance evaluation. While XGBoost achieved a marginally higher test AUC (0.7204), the 

SVM model demonstrated superior generalization with a smaller train-test AUC and pre-

cision disparity, indicating greater resilience to overfitting. In contrast, Random Forest (RF) 

showed near-perfect performance in the training AUCs of all representations, but suffered 

a substantial drop in the test AUC. This large difference reflects a marked tendency to-

ward overfitting. 

The poor performance of MACCS-based models, particularly with SVM (AUC < 0.5), 

reflects the limitations of MACCS fingerprints, as they provide a simpler and more gen-

eralized view of molecular structures that capture only a limited set of chemical features. 

Similarly, hybrid representations did not offer significant improvements over Morgan, 

suggesting that redundancy between descriptors does not provide additional predictive 

value. Morgan fingerprints offer a more detailed and comprehensive representation of 

molecular structures, which, although predicting fewer targets than MACCS, are more 

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/vmd/
https://www.python.org/
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reliable predictions [23]. This trend reflects greater specificity, focusing on a smaller range 

of actual interactions, which results in higher overall prediction reliability [23–25]. This 

suggests the superiority of circular fingerprints for encoding local connectivity patterns 

with higher resolution, making them more suitable for identifying actual interactions be-

tween drugs and targets [23]. 

The Morgan fingerprints-SVM model was selected for screening the NaturAr data-

base, classifying 624 out of 1281 compounds as potential Aurora-A inhibitors (probability > 

0.5/best scoring than A9B). 

Table 1. Performance metrics of ML models for predicting Aurora-A inhibitory activity. 

Representation Model Train AUC Test AUC Train F1 Test F1 Train Precision Test Precision 

Morgan SVM 0.8736 0.6940 0.8756 0.8214 0.9246 0.8493 

Morgan RF 0.9999 0.6858 0.9982 0.8743 0.9988 0.8369 

Morgan XGBoost 0.9871 0.7204 0.9516 0.8179 0.9947 0.8608 

MACCS SVM 0.3405 0.4257 0.3536 0.3565 0.3169 0.3216 

MACCS RF 0.9991 0.5425 0.9933 0.8643 0.9963 0.8188 

MACCS XGBoost 0.9095 0.5594 0.8254 0.7074 0.9653 0.8321 

Hybrid SVM 0.9956 0.6949 0.9594 0.8208 0.9987 0.8411 

Hybrid RF 1.0000 0.6824 1.0000 0.8840 1.0000 0.8152 

Hybrid XGBoost 0.9626 0.7018 0.9094 0.7869 0.9816 0.8408 

3.2. Molecular Docking Results 

The docking protocol was validated by redocking the co-crystallized ligand A9B into 

the TPX2-binding interface of Aurora-A (PDB: 5OSD), showing a 1.011 Å RMSD value 

between the docked and crystal poses, indicating good accuracy of the molecular docking 

protocol [26]. The 624 ML-predicted active compounds were docked, along with A9B as a 

control (a total of 625 molecules). Of these, 117 compounds displayed superior FRED 

Chemgauss4 scores compared to A9B, suggesting stronger predicted affinities for the F-

pocket. These hits exhibited diverse scaffolds typical of natural products, with molecular 

weights ranging from approximately 166 to 466 Da, and LogP values between −2.89 and 

6.98. 

The top five scoring ligands are summarized in Table 2. Docking scores range from 

−9.93 to −8.10 kcal/mol, which indicates a strong binding affinity toward Aurora A than 

A9B. Figure 1 shows the amino acid residues involved in stabilizing the Aurora A–ligand 

534 complex. The hydrogen bond formed between Ser155 and ligand 534, which is also 

conserved in ligand 533, emerges as the primary interaction anchoring the ligands within 

the binding site, enhancing the stability of the complexes [27]. Hydrophobic contacts, con-

sistently present across all complexes, play a central role in increasing the affinity between 

the ligands and the surrounding residues in the active site [27,28]. This finding aligns with 

previous reports, indicating that Aurora A-ligand binding is largely driven by van der 

Waals forces and nonpolar (lipophilic) interactions [28]. 

The 117 compounds with docking scores superior than A9B comprise naphthalene 

and cinnamic acid derivatives, flavonoids, terpenic lactones, and prenylated lipids. Rep-

resentative scaffolds of the ligands exhibiting affinity toward Aurora kinase A are shown 

in Figure 2, highlighting the structural diversity of the most promising candidates. 
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Figure 1. Interaction of Aurora-A with the docked ligand 534. The binding conformation of ligand 

534 within the F pocket of Aurora-A was obtained from molecular docking studies. Key interactions 

of ligand 534 with protein residues include Ser155, Phe157, Trp128, Leu159, Ile209, Glu152, Phe133, 

Tyr197, and Gly197. Figure generated using Discovery Studio Visualizer 2024. 

 

Figure 2. Scaffolds identified among the active-predicted compounds against Aurora kinase A. 

The structures correspond to (A) coumarin, (B) benzofuran derivate, (C) isobenzofuranone derivate, 

(D) Aromatic ester with a stilbene-like framework, and (E) indene. Figure generated using Marvin 

JS 23.8.0. 

Table 2. FRED Chemgauss4 docking scores and interaction profiles with Aurora-A for the top five 

compounds. 

NatID SMILE Code 
FRED Chemgauss4 

Score 
Interacting Residues of Aurora-A 

534 
CC(C)[C@H]1CCc2c(O)ccc3c2[C@H]1O

C3=O 
−9,9306 

Trp128, Phe133, Glu152, Ser155, 

Phe157, Leu159, Tyr197, Gly198, Ile209 

1231 
CC(CCc1ccc(O)cc1)OC(=O)/C=C/c1ccc(

O)c(O)c1 
−9,1135 

Trp128, Phe133, Glu152, Ser155, 

Phe157, Leu159, Ser186, His187, 

Arg189, Leu196, Tyr197, Ile209 

533 
C=C(C)[C@H]1CCc2c(OC)ccc3c2[C@H]

1OC3=O 
−8,8393 

Trp128, Phe133, Glu152, Ser155, 

Phe157, Leu159, Tyr197, Ile209 

1228 
C[C@@H](CCc1ccc(O)c(O)c1)OC(=O)/C

=C/c1ccc(O)c(O)c1 
−8,7402 

Trp128, Phe133, Glu152, Ser155, 

Phe157, Leu159, Ser186, Arg195, 

Leu196, Tyr197, Ile209 
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1230 
CC(CCc1ccc(O)c(O)c1)OC(=O)/C=C/c1

ccc(O)c(O)c1 
−8,7402 

Trp128, Phe133, Glu152, Ser155, 

Phe157, Leu159, Ser186, Arg195, 

Leu196, Tyr197, Ile209 

A9B * 
C1=CC(=CC=C1C2=CC=C(O2)C(=O)N

N)Cl 
−5.6712 

Trp128, Phe133, Glu152, Phe157, 

Leu159, Arg195, Tyr197, Ile209 

*: control. 

3.3. Molecular Dynamics Simulations 

To assess binding stability, the top three docked compounds (NaturAr IDs: 534, 1231, 

and 533) together with A9B as a control, underwent 25 ns MD simulations. Molecular 

dynamics simulations revealed distinct behaviors regarding the stability and binding of 

the top-ranked ligands against Aurora-A (Figure 3). Ligands 534 and 533 exhibited rela-

tively low RMSD values (~4–5 Å) (Table 3), indicative of stable complexes throughout the 

25 ns trajectory, likely due to their reduced conformational flexibility and rigidity, which 

fit well into the F pocket. In contrast, ligands A9B and 1231 showed higher fluctuations 

(~6–7 Å), reflecting increased conformational plasticity within the binding pocket [28]. De-

spite the higher RMSD, ligand 1231 achieved the most favorable binding free energy 

(−16.56 kcal/mol), suggesting that adaptive binding and favorable residue-level interac-

tions (π–π stacking and biphenyl/phenolic hydrophobic contacts) can compensate for 

greater structural fluctuations. Such conformational flexibility may represent induced-fit 

or conformational selection processes that enhance enthalpic contacts without necessarily 

diminishing overall affinity. 

 

Figure 3. RMSD values of ligands at the binding pocket of Aurora-A during a 25 ns molecular 

dynamics simulation. 

Table 3. Molecular dynamics simulation metrics. 

Ligand 534 1231 533 A9B 

Average RMSD (Å) 4.403 ± 1.094 6.904 ± 2.323 4.637 ± 1.433 6.280 ± 0.926 

MM/PBSA (Kcal/mol) −14.515 ± 2.757 −16.561 ± 3.655 −15.694 ± 2.279 −13.479 ± 1.515 

4. Conclusions 

The identification of novel molecular scaffolds in this study highlights the unique 

chemical properties of natural products in the search for cancer therapies. The prioritized 

natural compounds (e.g., coumarins, isochromanones, stilbene-type frameworks, and in-

denes) exhibited structures that have been little explored in known Aurora-A inhibitors, 

which are typically based on conventional heterocycles (e.g., pyrrolopyrazoles or quino-

lines) [29]. This unprecedented structural diversity is relevant as it broadens the chemical 

space available for anticancer drug design. Resources such as natural product databases 

(e.g., NaturAr, with more than 1,200 metabolites from Argentine biodiversity) are 
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essential for harnessing this chemical diversity in drug innovation. In fact, studies indicate 

that approximately half of all approved drugs come from natural products or their deriv-

atives [30], highlighting the importance of continuing to explore natural sources using 

modern computational approaches. Taken together, this study underscores the value of 

integrating the wealth of natural products with advanced computational methodologies 

to discover selective Aurora-A inhibitors, providing new starting points for more effective 

and selective anti-cancer therapies. 
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