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Abstract: This study developed a QSPR model to predict the n-octanol/water partition
coefficient (log Kow) of 56 pesticides. Molecular descriptors were calculated using Dragon
software. A genetic algorithm and variable subset selection identified key descriptors. The
model, built by multiple linear regression, showed strong performance (R?=0.9322, Q%.00
=0.9089, Q%xt=0.9277). The dataset was split using the Kennard-Stone algorithm to ensure
representative sampling. Internal and external validations confirmed robustness and pre-
dictive power. This model offers a reliable tool for estimating log Kow, supporting envi-
ronmental risk assessment and the evaluation of pesticide behavior and toxicity.
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1. Introduction

Pesticides are unique among chemicals because they are intentionally introduced
into the environment to manage pests and protect crops and industrial goods. However,
their effects are not limited to target species; they also impact non-target organisms and
ecosystems. Frequent use can reduce biodiversity [1]. Many pesticides are persistent, re-
maining in soil or leaching into water bodies, which leads to widespread contamination.
Due to their chemical nature, they can bioaccumulate in living organisms and affect hu-
man health through food chains. The environmental risks of intensive pesticide use are
well documented and significant [2].

Quantitative structure—activity relationships (QSARs) offer a way to predict chemical
toxicity based on molecular structure, even before synthesis. These models are especially
useful when experimental data are scarce [1,2]. QSPR/QSAR methods rely on the idea that
molecular properties are linked to specific structural features, called descriptors [3]. These
computational tools can forecast chemical behavior, identify key structural elements, and
reduce the need for experimental testing, making them cost- and time-effective in areas
like drug development [4].

Physicochemical properties—such as vapor pressure, solubility, and partition coeffi-
cients-are central to understanding how organic compounds behave in the environment
[5]. Among these, the n-octanol/water partition coefficient (Kow) is crucial. A high log
Kow suggests a higher potential for bioaccumulation in organisms. This parameter is also
used to infer systemic action and environmental fate of compounds [6]. In QSAR models,
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log Kow is often employed as a descriptor of toxicity [7-9]. The partition coefficient is
defined as the ratio of equilibrium concentrations of a substance in a biphasic system like
octanol and water [10], with octanol mimicking biological lipids [11].

This study aimed to develop QSAR models for predicting the acute toxicity of pesti-
cides and to construct a statistical model for estimating their log Kow. Using multiple
linear regression (MLR), the model identifies which molecular descriptors significantly
influence variation in log Kow across the pesticide dataset.

2. Materials and Method

2.1. Experimental Data

This study used a dataset of 56 pesticides obtained from the published work of G.S.
Patil [12]. The partition coefficient values were converted to log Kow to minimize data
variability. The dataset was split into two subsets: 42 compounds for training and 14 for
external validation.

2.2. Descriptors Generation

The molecular structures of all compounds were built using HyperChem [13] and
initially optimized via the MM+ force field with the Polak—Ribiere algorithm. Final geom-
etries corresponding to the lowest energy conformers were obtained using the semi-em-
pirical PM3 method at the restricted Hartree—Fock level, without configuration interac-
tion, applying a gradient norm threshold of 0.001 kcal-A-'mol-. These optimized struc-
tures were used to calculate 1664 molecular descriptors with Dragon software (version
5.4) [14]. Additionally, quantum chemical descriptors—including HOMO, LUMO, the
HOMO-LUMO gap (AHL), and ionization potential-were computed using the PM3
method in HyperChem and considered during descriptor selection for model develop-
ment.

3. Results and Discussion

The dataset of 56 compounds was partitioned into two subsets using the Kennard—
Stone algorithm implemented in CADEX: a calibration set of 42 compounds and a valida-
tion set of 14, as shown in Table 1. The objective was to select a reduced set of descriptors
that best account for the variation in the dependent variable (log Kow). Descriptor selec-
tion was performed using genetic algorithms provided in the Mobydigs software [15].

The application of the GA-VSS led to several effective models for predicting the Kow
of pesticide chemicals based on various sets of molecular descriptors. The best model,
derived from the 56 pesticide compounds, demonstrated high predictive accuracy and
was established using the following regression equation:

log Kow =1.63 + 0.301 x Polarizability - 0.798 x O-058 - 0.230 x nHAcc - 4.55 x Elu (1)

Equation (1) incorporates four distinct categories of molecular descriptors, summa-
rized in Table 2. The model’s performance was assessed using predictive metrics such as
Q%oo and Q%mo, along with the coefficient of determination (R?) to evaluate the goodness
of fit. Additionally, the standard deviation of prediction error (SDEP) and the standard
deviation of calculation error (SDEC) within the applicability domain are reported.

As shown in Table 3, the fitting and validation metrics are consistently high, confirm-
ing the model’s strong predictive performance. The selected descriptors effectively cap-
ture the variation in the partition coefficient. The R? value reflects a well-fitted model, and
the small difference between R? and Q%00 indicates strong internal robustness, further
supported by a high Fisher statistic. The close values of SDEC and SDEP suggest that the
model’s predictive ability is consistent with its fitting accuracy. External validation results,
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including Q% and SDEPex, demonstrate the model’s reliability in predicting data not

used during its training phase.

Table 1. The data set and the corresponding observed and predicted values of log (Kow) by MLR

for the training and test sets.

ID Object Status Log Koweyp LogKowcac Log Kowerred
1 aa Aldicarb Training 1.1300 1.6633 1.7055
2 ac Azinphos-ethyl Training 3.400 3.8846 3.9365
3 ad Azinphos-methyl Training 2.6900 3.1298 3.1679
4 af Bromophos-ethyl Training 5.6800 4.6503 4.5145
5 ah Carbofuran Training 1.6300 2.4009 2.4373
6 ak Chlordimeform Training 2.8900 3.1089 3.1360
7 al Chlorfenvinphos Training 3.8100 3.7036 3.6872
8 am Chlorpyrifos Training 4.9600 4.2289 4.1797
9 aq Dichlorvos Training 1.4700 0.7627 0.6021
10 as Disulfoton Training 4.0200 4.0222 4.0225
11 at Disulfoton-sulfone Training 1.8700 1.8826 1.8843
12 au Disulfoton-sulfoxide Training 1.7300 2.7337 2.8112
13 av Ethion Training 5.0700 5.0293 5.0176
14 ax Fenitrothion Training 3.400 3.0789 3.0405
15 ay Fensulfothion Training 2.2300 2.9470 2.9820
16 az Fensulfothion-sulfide Training 4.1600 4.3343 4.3540
17 bb Fensulfothion-sulfoxide Training 2.5900 1.0347 0.8113
18 bd Fenofos Training 3.8900 3.9289 3.9362
19 bf Isofenphos Training 4.1200 4.3999 4.4441
20 bg Leptophos Training 5.8800 5.4460 5.3194
21 bh Malathion Training 2.8400 2.4827 2.3990
22 bi Methidathion Training 2.4200 2.4721 2.4771
23 bk Paraoxon Training 1.9800 1.9711 1.9700
24 bl Parathion Training 3.7600 3.4904 3.4617
25 bm Parathion-amino Training 2.6000 3.5076 3.5685
26 bn Parathion-methyl Training 2.9400 2.7758 2.7507
27 bo Phorate Training 3.8300 3.7061 3.6934
28 bp Phorate sulfoxide Training 1.7700 2.3529 2.3898
29 bq Phorate sulfone Training 1.9800 1.5262 1.4635
30 br Phosalone Training 4.3800 4.0743 4.0489
31 bs Phosmet Training 2.7800 2.4588 2.4096
32 bt Phoxim Training 4.3900 3.9275 3.8851
33 bu Pirimiphos ethyl Training 4.8500 4.7015 4.6813
34 bv Pirimiphos methyl Training 4.2000 3.9870 3.9580
35 bw Propoxur Training 1.5500 2.1930 2.2259
36 bx Ronnel Training 4.8100 3.7066 3.6269
37 by Temephos Training 5.9500 6.4691 6.6715
38 bz Terbufos Training 4.4800 4.2510 4.1733
39 cb Terbufos-sulfoxide Training 2.4800 2.9511 3.0095
40 cc Terbufos sulfone Training 2.2100 2.1428 2.1249
41 cd Triazophos Training 3.5500 4.2176 4.2735
42 ce Trichlorfon Training 0.4300 1.0645 1.1735
43 ab Aminocarb Test 1.7300 - 2.3518
44 ae Bromophos Test 4.8800 - 3.9279
45 ag Carbaryl Test 2.3100 - 2.5399
46 ai Carbophenothion Test 5.1200 - 5.1524
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47 aj Carbophenothion-methyl Test 4.8200 - 4.4169
48 an Chlorpyrifos-methyl Test 4.3000 - 3.4384
49 ao Diazinon Test 3.8100 - 4.1168
50 ap Dicapthon Test 3.6200 - 3.1335
51 ar Dimethoate Test 0.7700 - 1.6071
52 aw Fenamiphos Test 3.2300 - 3.6289
53 bc Fenthion Test 4.0900 - 3.9071
54 be Iodofos Test 5.1600 - 4.3957
55 bj Methomyl Test 0.1300 - 0.8981
56 cf Trichloronat Test 5.2200 - 4.4896

Table 2. Description of the selected descriptors by GA.

Descriptors Class Signification

Polarizability defined as the dipole moment
Polarizability =~ Hyperchem descriptor ~ of a molecule induced by an electric field of
unit intensity.

0-058 Atom-centered fragments Defined hydrophobicity.

Total number of Ns, Os and Fs in the mole-
cule, excluding N with a formal positive

HA F ional
A unctional group counts charge, higher oxidation states and the pyr-
rolyl form of N.
Elu WHIM descriptors 1st componen.t accessibilit-y directional WHIM
index/unweighted.
Table 3. Results and statistical parameters of GA-MLR.
R? Q%00 QZext SDEC SDEP  SDEPexr F s

93.22 90.89 92.77 0.450 0.520 0.546 92.4052 0.511

The R? value reflects the model’s fitting quality, while the small difference between
R? and Q%00 indicates strong robustness, reinforced by a high Fisher statistic. The similar-
ity between SDEC and SDEP suggests that the model’s predictive accuracy is consistent
with its calibration performance. External validation metrics, including QZxt and SDEPex,
confirm the model’s reliability in predicting the behavior of compounds outside the train-
ing set.

The symmetrical distribution of errors around the zero line indicates that the model
does not exhibit systematic bias. Figure 1 presents the Q2 and R? coefficients, comparing
the real model (black dot) with the randomized models (red circles). The Q2 values of the
randomized models are consistently below 20, and in many cases negative, confirming
that the developed model is based on real structure-property relationships rather than
random chance.
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Figure 1. Randomization test.

4. Conclusions

In this study, the QSPR approach was employed to correlate the log Kow values of 56 pesticides
with theoretical molecular descriptors selected using a genetic algorithm. Multiple linear regression
was applied to identify linear relationships between the descriptors (independent variables) and log
Kow (dependent variable). The resulting model demonstrated optimal performance in terms of

goodness of fit, internal and external validation, and predictive accuracy.
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