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Abstract: This study developed a QSPR model to predict the n-octanol/water partition 

coefficient (log Kow) of 56 pesticides. Molecular descriptors were calculated using Dragon 

software. A genetic algorithm and variable subset selection identified key descriptors. The 

model, built by multiple linear regression, showed strong performance (R2 = 0.9322, Q2LOO 

= 0.9089, Q2ext = 0.9277). The dataset was split using the Kennard-Stone algorithm to ensure 

representative sampling. Internal and external validations confirmed robustness and pre-

dictive power. This model offers a reliable tool for estimating log Kow, supporting envi-

ronmental risk assessment and the evaluation of pesticide behavior and toxicity. 
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1. Introduction 

Pesticides are unique among chemicals because they are intentionally introduced 

into the environment to manage pests and protect crops and industrial goods. However, 

their effects are not limited to target species; they also impact non-target organisms and 

ecosystems. Frequent use can reduce biodiversity [1]. Many pesticides are persistent, re-

maining in soil or leaching into water bodies, which leads to widespread contamination. 

Due to their chemical nature, they can bioaccumulate in living organisms and affect hu-

man health through food chains. The environmental risks of intensive pesticide use are 

well documented and significant [2]. 

Quantitative structure–activity relationships (QSARs) offer a way to predict chemical 

toxicity based on molecular structure, even before synthesis. These models are especially 

useful when experimental data are scarce [1,2]. QSPR/QSAR methods rely on the idea that 

molecular properties are linked to specific structural features, called descriptors [3]. These 

computational tools can forecast chemical behavior, identify key structural elements, and 

reduce the need for experimental testing, making them cost- and time-effective in areas 

like drug development [4]. 

Physicochemical properties—such as vapor pressure, solubility, and partition coeffi-

cients-are central to understanding how organic compounds behave in the environment 

[5]. Among these, the n-octanol/water partition coefficient (Kow) is crucial. A high log 

Kow suggests a higher potential for bioaccumulation in organisms. This parameter is also 

used to infer systemic action and environmental fate of compounds [6]. In QSAR models, 
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log Kow is often employed as a descriptor of toxicity [7–9]. The partition coefficient is 

defined as the ratio of equilibrium concentrations of a substance in a biphasic system like 

octanol and water [10], with octanol mimicking biological lipids [11]. 

This study aimed to develop QSAR models for predicting the acute toxicity of pesti-

cides and to construct a statistical model for estimating their log Kow. Using multiple 

linear regression (MLR), the model identifies which molecular descriptors significantly 

influence variation in log Kow across the pesticide dataset. 

2. Materials and Method 

2.1. Experimental Data 

This study used a dataset of 56 pesticides obtained from the published work of G.S. 

Patil [12]. The partition coefficient values were converted to log Kow to minimize data 

variability. The dataset was split into two subsets: 42 compounds for training and 14 for 

external validation. 

2.2. Descriptors Generation 

The molecular structures of all compounds were built using HyperChem [13] and 

initially optimized via the MM+ force field with the Polak–Ribiere algorithm. Final geom-

etries corresponding to the lowest energy conformers were obtained using the semi-em-

pirical PM3 method at the restricted Hartree–Fock level, without configuration interac-

tion, applying a gradient norm threshold of 0.001 kcal·Å−1·mol−1. These optimized struc-

tures were used to calculate 1664 molecular descriptors with Dragon software (version 

5.4) [14]. Additionally, quantum chemical descriptors—including HOMO, LUMO, the 

HOMO–LUMO gap (ΔHL), and ionization potential-were computed using the PM3 

method in HyperChem and considered during descriptor selection for model develop-

ment. 

3. Results and Discussion 

The dataset of 56 compounds was partitioned into two subsets using the Kennard–

Stone algorithm implemented in CADEX: a calibration set of 42 compounds and a valida-

tion set of 14, as shown in Table 1. The objective was to select a reduced set of descriptors 

that best account for the variation in the dependent variable (log Kow). Descriptor selec-

tion was performed using genetic algorithms provided in the Mobydigs software [15]. 

The application of the GA–VSS led to several effective models for predicting the Kow 

of pesticide chemicals based on various sets of molecular descriptors. The best model, 

derived from the 56 pesticide compounds, demonstrated high predictive accuracy and 

was established using the following regression equation: 

log Kow = 1.63 + 0.301 × Polarizability − 0.798 × O-058 − 0.230 × nHAcc − 4.55 × E1u (1) 

Equation (1) incorporates four distinct categories of molecular descriptors, summa-

rized in Table 2. The model’s performance was assessed using predictive metrics such as 

Q2LOO and Q2LMO, along with the coefficient of determination (R2) to evaluate the goodness 

of fit. Additionally, the standard deviation of prediction error (SDEP) and the standard 

deviation of calculation error (SDEC) within the applicability domain are reported. 

As shown in Table 3, the fitting and validation metrics are consistently high, confirm-

ing the model’s strong predictive performance. The selected descriptors effectively cap-

ture the variation in the partition coefficient. The R2 value reflects a well-fitted model, and 

the small difference between R2 and Q2LOO indicates strong internal robustness, further 

supported by a high Fisher statistic. The close values of SDEC and SDEP suggest that the 

model’s predictive ability is consistent with its fitting accuracy. External validation results, 
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including Q2ext and SDEPext, demonstrate the model’s reliability in predicting data not 

used during its training phase. 

Table 1. The data set and the corresponding observed and predicted values of log (Kow) by MLR 

for the training and test sets. 

ID Object Status Log KowExp Log KowCalc Log KowPred 

1 aa Aldicarb Training 1.1300 1.6633 1.7055 

2 ac Azinphos-ethyl Training 3.400 3.8846 3.9365 

3 ad Azinphos-methyl Training 2.6900 3.1298 3.1679 

4 af Bromophos-ethyl Training 5.6800 4.6503 4.5145 

5 ah Carbofuran Training 1.6300 2.4009 2.4373 

6 ak Chlordimeform Training 2.8900 3.1089 3.1360 

7 al Chlorfenvinphos Training 3.8100 3.7036 3.6872 

8 am Chlorpyrifos Training 4.9600 4.2289 4.1797 

9 aq Dichlorvos Training 1.4700 0.7627 0.6021 

10 as Disulfoton Training 4.0200 4.0222 4.0225 

11 at Disulfoton-sulfone Training 1.8700 1.8826 1.8843 

12 au Disulfoton-sulfoxide Training 1.7300 2.7337 2.8112 

13 av Ethion Training 5.0700 5.0293 5.0176 

14 ax Fenitrothion Training 3.400 3.0789 3.0405 

15 ay Fensulfothion Training 2.2300 2.9470 2.9820 

16 az Fensulfothion-sulfide Training 4.1600 4.3343 4.3540 

17 bb Fensulfothion-sulfoxide Training 2.5900 1.0347 0.8113 

18 bd Fenofos Training 3.8900 3.9289 3.9362 

19 bf Isofenphos Training 4.1200 4.3999 4.4441 

20 bg Leptophos Training 5.8800 5.4460 5.3194 

21 bh Malathion Training 2.8400 2.4827 2.3990 

22 bi Methidathion Training 2.4200 2.4721 2.4771 

23 bk Paraoxon Training 1.9800 1.9711 1.9700 

24 bl Parathion Training 3.7600 3.4904 3.4617 

25 bm Parathion-amino Training 2.6000 3.5076 3.5685 

26 bn Parathion-methyl Training 2.9400 2.7758 2.7507 

27 bo Phorate Training 3.8300 3.7061 3.6934 

28 bp Phorate sulfoxide Training 1.7700 2.3529 2.3898 

29 bq Phorate sulfone Training 1.9800 1.5262 1.4635 

30 br Phosalone Training 4.3800 4.0743 4.0489 

31 bs Phosmet Training 2.7800 2.4588 2.4096 

32 bt Phoxim Training 4.3900 3.9275 3.8851 

33 bu Pirimiphos ethyl Training 4.8500 4.7015 4.6813 

34 bv Pirimiphos methyl Training 4.2000 3.9870 3.9580 

35 bw Propoxur Training 1.5500 2.1930 2.2259 

36 bx Ronnel Training 4.8100 3.7066 3.6269 

37 by Temephos Training 5.9500 6.4691 6.6715 

38 bz Terbufos Training 4.4800 4.2510 4.1733 

39 cb Terbufos-sulfoxide Training 2.4800 2.9511 3.0095 

40 cc Terbufos sulfone Training 2.2100 2.1428 2.1249 

41 cd Triazophos Training 3.5500 4.2176 4.2735 

42 ce Trichlorfon Training 0.4300 1.0645 1.1735 

43 ab Aminocarb Test 1.7300 - 2.3518 

44 ae Bromophos Test 4.8800 - 3.9279 

45 ag Carbaryl Test 2.3100 - 2.5399 

46 ai Carbophenothion Test 5.1200 - 5.1524 
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47 aj Carbophenothion-methyl Test 4.8200 - 4.4169 

48 an Chlorpyrifos-methyl Test 4.3000 - 3.4384 

49 ao Diazinon Test 3.8100 - 4.1168 

50 ap Dicapthon Test 3.6200 - 3.1335 

51 ar Dimethoate Test 0.7700 - 1.6071 

52 aw Fenamiphos Test 3.2300 - 3.6289 

53 bc Fenthion Test 4.0900 - 3.9071 

54 be Iodofos Test 5.1600 - 4.3957 

55 bj Methomyl Test 0.1300 - 0.8981 

56 cf Trichloronat Test 5.2200 - 4.4896 

Table 2. Description of the selected descriptors by GA. 

Descriptors Class Signification 

Polarizability Hyperchem descriptor 

Polarizability defined as the dipole moment 

of a molecule induced by an electric field of 

unit intensity. 

O-058 Atom-centered fragments Defined hydrophobicity. 

nHAcc Functional group counts 

Total number of Ns, Os and Fs in the mole-

cule, excluding N with a formal positive 

charge, higher oxidation states and the pyr-

rolyl form of N. 

E1u WHIM descriptors 
1st component accessibility directional WHIM 

index/unweighted. 

Table 3. Results and statistical parameters of GA-MLR. 

R2 Q2LOO Q2EXT SDEC SDEP SDEPEXT F s 

93.22 90.89 92.77 0.450 0.520 0.546 92.4052 0.511 

The R2 value reflects the model’s fitting quality, while the small difference between 

R2 and Q2LOO indicates strong robustness, reinforced by a high Fisher statistic. The similar-

ity between SDEC and SDEP suggests that the model’s predictive accuracy is consistent 

with its calibration performance. External validation metrics, including Q2ext and SDEPext, 

confirm the model’s reliability in predicting the behavior of compounds outside the train-

ing set. 

The symmetrical distribution of errors around the zero line indicates that the model 

does not exhibit systematic bias. Figure 1 presents the Q2 and R2 coefficients, comparing 

the real model (black dot) with the randomized models (red circles). The Q2 values of the 

randomized models are consistently below 20, and in many cases negative, confirming 

that the developed model is based on real structure–property relationships rather than 

random chance. 
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Figure 1. Randomization test. 

4. Conclusions 

In this study, the QSPR approach was employed to correlate the log Kow values of 56 pesticides 

with theoretical molecular descriptors selected using a genetic algorithm. Multiple linear regression 

was applied to identify linear relationships between the descriptors (independent variables) and log 

Kow (dependent variable). The resulting model demonstrated optimal performance in terms of 

goodness of fit, internal and external validation, and predictive accuracy. 

Author Contributions: Conceptualization, Y.D.; methodology, Y.D. and M.F.; software, Y.D.; vali-

dation, Y.D., M.F. and A.D.; formal analysis, M.F.; investigation Y.D., M.F. and A.D.; resources, Y.D.; 

data curation, Y.D., M.F. and A.D.; writing—original draft preparation, I.B. and S.Y.; writing—re-

view and editing, R.M., S.N. and A.S.; visualization, Y.D.; supervision, Y.D.; project administration, 

Y.D. All authors have read and agreed to the published version of the manuscript. 

Funding:  

Institutional Review Board Statement:  

Informed Consent Statement:  

Data Availability Statement:  

Acknowledgments: The authors gratefully acknowledge the Environmental Research Center in An-

naba, Algeria, for their support and valuable contributions to this work. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Bradbury, S.P. Predicting modes of toxic action from chemical structure: An overview. SAR QSAR Environ Res. 1994, 2, 89–104. 

https://doi.org/10.1080/10629369408028842. 

2. Bearden, A. P.; Schultz, T. W. Structure-Activity Relationships for Pimephales and Tetrahymena: A Mechanism of Action Ap-

proach. Environ. Toxicol. Chem. 1997, 16, 1311–1317. https://doi.org/10.1002/etc.5620160629. 

3. Liu, H. X.; Hu, R. J.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; & Fan, B. T. The prediction of human oral absorption for 

diffusion rate-limited drugs based on heuristic method and support vector machine. J. Comput. Aided Mol. Des. 2005, 19, 33–46. 

https://doi.org/10.1007/s10822-005-0095-8. 

4. Si, H.; Yuan, S.; Zhang, K.; Fu, A.; Duan, Y.-B.; ,Hu, Z. Quantitative structure–activity relationship study on EC50 of anti-HIV 

drugs. Chemometr. Intell. Lab. Syst. 2008, 90, 15–24. https://doi.org/10.1016/j.chemolab.2007.06.011. 

-80

-60

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

Randomized models Real model

R2

Q2



Chem. Proc. 2025, x, x FOR PEER REVIEW 6 of 6 
 

 

5. Xu, H. Y.; Zhang, J. Y.; Zou, J. W.; Chen, X. S. QSPR models for the physicochemical properties of halogenated methyl-phenyl 

ethers. J. Mol. Graph. Model. 2008, 26, 1076–1081. https://doi.org/10.1016/j.jmgm.2007.09.004. 

6. Wania, F.; Mackay, D. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ. 

Pollut. 1999, 100, 223–240. https://doi.org/10.1016/s0269-7491(99)00093-7. 

7. Fisher, S. W.; Lydy, M. J.; Barger, J.; Landrum, P. F. Quantitative structure–activity relationships for predicting sediment-sorbed 

chlorobenzene bioavailability to Chironomus decorus larvae. Environ. Toxicol. Chem. 1993, 12, 1307–1318. 

https://doi.org/10.1002/etc.5620120721. 

8. Van Leeuwen, C. J.; Vanderzandt, P. T.; Aldenberg, T.; Verhaar, H. J. M.; Hermens, J. L. M. The application of QSARs, extrapo-

lation and equilibrium partitioning in aquatic effects assessment for narcotic pollutants. Sci. Total Environ. 1991, 109, 681–690. 

https://doi.org/10.1016/0048-9697(91)90222-z. 

9. Niculescu, S. P.; Kaiser, K. L. E.; Schüürmann, G. Influence of Data Preprocessing and Kernel Selection on Probabilistic Neural 

Network Modeling of the Acute Toxicity of Chemicals to the Fathead Minnow and Vibrio fischeri Bacteria. Water Qual. Res. J. 

Can. 1998, 33, 153–166. https://doi.org/10.2166/wqrj.1998.009. 

10. Wong, S.L. Algal assay evaluation of trace contaminants in surface water using the nonionic surfactant Triton X-100. Aquat. 

Toxicol. 1985, 6, 115–131. https://doi.org/10.1016/0166-445X(85)90011-6. 

11. Chessells, M.; Hawker, D. W.; Connell, D. W. Critical evaluation of the measurement of the 1-octanol/water partition coefficient 

of hydrophobic compounds. Chemosphere 1991, 22, 1175–1190. https://doi.org/10.1016/0045-6535(91)90213-W. 

12. Patil, G.S. Prediction of aqueous solubility and octanol–water partition coefficient for pesticides based on their molecular struc-

ture. J. Hazard Mater. 1994, 36, 34–43. https://doi.org/10.1016/0304-3894(93)E0049-8. 

13. HyperchemTM. Release 6.02 for Windows. Molecular Modeling System. 2000. Available online: http://www.hyper.com/ (ac-

cessed on). 

14. RTodeschini, V. Consonni, A.; Mauri, M. Pavan, Dragon Software, version 5.4, Copyright TALETE srl, 2005. 

15. RTodeschini, D.; Ballabio, V.; Consonni, A.; Mauri, M. Paven, MobyDigs, version 1.1, Copyright TALETE srl, 2009. Available 

online: http://www.talete.mi.it/ (accessed on). 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


