

The 3rd International Online Conference on Clinical Medicine

17-19 November 2025 | Online

The Role of Vitamin D in Bone Health: A Clinical Perspective

Mohamed Samy Saafan

Faculty of Medicine, Mansoura University, Egypt

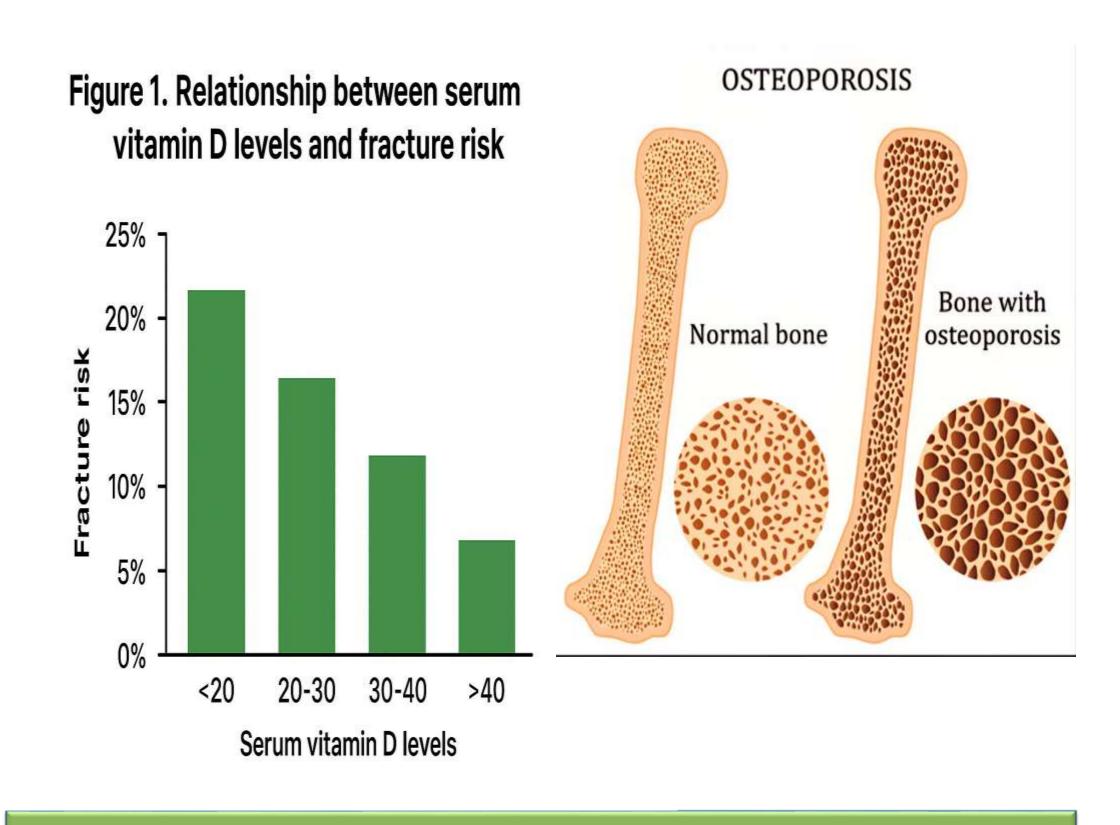
™ mohamedsaafan@std.mans.edu.eg

INTRODUCTION & AIM

Vitamin D plays a crucial role in calcium homeostasis and bone metabolism.

Deficiency in **vitamin D** is linked to impaired **bone mineralization**, increased **fracture risk**, and **osteoporosis**.

Despite growing global awareness, vitamin D insufficiency remains highly prevalent across different age groups, particularly in the elderly and postmenopausal women.


This study aims to evaluate the impact of vitamin D levels on bone health outcomes, investigate the effectiveness of supplementation in at-risk populations, and highlight the importance of preventive strategies in clinical practice.

METHOD

A systematic review was conducted, including randomized controlled trials (RCTs) and observational studies published between 2015 and 2024. Databases searched included PubMed, Scopus, and Cochrane Library. Studies assessing serum 25-hydroxyvitamin D levels and outcomes such as bone mineral density (BMD), fracture incidence, or bone turnover markers were included. Data were extracted on participant demographics, intervention type, duration, baseline vitamin D status, and clinical outcomes. A qualitative synthesis was performed to identify trends and evaluate clinical significance.

RESULTS & DISCUSSION

Twenty-eight studies with a total of 15,342 participants were included. Low serum vitamin D (<20 ng/mL) was consistently associated with reduced BMD and a higher risk of osteoporotic fractures. Supplementation, particularly when combined with calcium, significantly improved BMD in postmenopausal women and elderly men. Fracture risk reduction ranged from 12% to 25%, especially in participants with baseline deficiency. Compliance, dosage, duration of supplementation, and initial vitamin D status were key determinants of efficacy.

CONCLUSION

Maintaining adequate vitamin D status is essential for bone health, particularly in high-risk populations.

Vitamin D supplementation effectively improves BMD and reduces fracture risk when appropriately administered.

Early detection of deficiency and individualized supplementation strategies are recommended to optimize skeletal outcomes and support long-term musculoskeletal health..

FUTURE WORK / REFERENCES

Future Work:

- Explore optimal vitamin D dosing strategies.
- Investigate genetic and environmental factors influencing vitamin D metabolism.

References:

- 1. Holick MF et al. Vitamin D Deficiency. N Engl J Med. 2007;357:266–281.
- 2. Bischoff-Ferrari HA et al. Fracture Prevention with Vitamin D Supplementation: A Meta-analysis. JAMA. 2005;293:2257–2264.