

The 3rd International Online Conference on Clinical Medicine

17-19 November 2025 | Online

Risk factors for cognitive decline in patients after coronary artery bypass grafting (five-year follow-up)

Irina D. Syrova, Olga A. Trubnikova, Irina V. Tarasova Research Institute for Complex Issues of Cardiovascular Diseases, Russia

AIM: To develop a prognostic model and identify risk factors that may lead to cognitive decline 5-7 years after coronary artery bypass surgery

METHOD

The computer program
"Psychophysiological Complex"
was used for complex
neuropsychological testing
with the determination of
indicators of psychomotor and
executive functions, attention
and short-term memory

Preoperative clinical characteristics of patients, n = 152

Characteristics	Patients
Age, years	57 [53; 61]
Arterial hypertension	129 (85)
Carotid artery stenosis	56 (37)
Duration of carotid artery stenosis, years	4 [2; 8]
Coronary artery disease duration, years	5 [3; 8]
Myocardial infarction in history	114 (75)
SYNTAX score	23 [16; 28]
Number of affected arteries	2 [2; 3]
Left ventricular ejection fraction, %	60 [51; 63]

Clinical characteristics of patients

	Patients		
Characteristics	Before the CABG	After 5 years	р
Class I-II angina pectoris	86 (57)	30 (20)	0.0004
Class III angina pectoris	33 (22)	5 (3)	< 0.0001
Class I-II CHF	116 (77)	146 (96)	0.001
Class III CHF	36 (24)	6 (4)	0.0007
Atrial fibrillation	5 (3)	12 (8)	0.1
Type 2 diabetes mellitus	21 (14)	39 (26)	0.002
CA stenosis	56 (37)	86 (57)	0.0001

The inclusion criteria were: age 45-69 years, male gender, normal or adjusted to normal vision and hearing, planned primary CABG with CPB. The exclusion criteria were: prior acute cerebrovascular accident (CVA), traumatic brain injury, depression (more than 8 points on the Beck's Depression Inventory), dementia (less than 24 points according to the MMSE), carotid artery stenosis (CA) greater than 50%, severe respiratory, renal and hepatic insufficiency, oncological diseases.

Changes in cognitive functions were calculated using 13 parameters from a common set of tests. Cognitive decline was determined by the "20-20" criterion: postoperative indicators of cognitive functions should be lower by 20% or more compared to preoperative values in 20% of all the indicators used in the study

RESULTS & DISCUSSION

Prevalence of more than 20% cognitive decline in the postoperative period

Cognitive domain	Parameters	Patients, n=146
Neurodynamics	Average exposure	24 (16.4)
	Mistakes	57 (39.0)
	Missed signals	89 (60.9)
Attention	The Bourdon test, processed characters:	
	- during the 1st minute	12 (8.2)
	– during the 4 th minute	11 (7.5)
Memory	10 numbers memory test	31 (21.2)
	10 syllables memory test	30 (20.6)
	10 words memory test	36 (24.7)

The main results of binary logistic regression predicting the development of cognitive decline

Step 6	B coefficient	RMSE	Wald	р	Exp (B)
CVA	21.634	16644.068	0.000	0.999	2485603116.578
CA stenosis (5	1.018	0.396	6.625	0.010	2.769
years)					
LVEF (before CABG)	-0.925	0.448	4.273	0.039	0.396
Smoking (before	1.067	0.381	7.841	0.005	2.906
CABG)					
HDL cholesterol (5	1.171	0.617	3.605	0.058	3.226
years)					
Triglycerides (5	0.533	0.209	6.527	0.011	1.704
years)					
Constant	-2.576	1.208	4.546	0.033	0.076

Classification matrix of the predictive model of cognitive decline in the long-term postoperative period

Actual cognitive	Predicted cog	Percent correct	
decline	Absent	Present	classification, %
Absent	65	14	82.3
Present	26	41	61.2
Total percent of correct classification, %			72.6

CONCLUSION

5-7 years after CABG surgery, 46% of patients experience a decrease in cognitive functions, manifested in the form of neurodynamic disorders, as well as deterioration of short-term memory. The factors included in the prognostic model were CA stenosis, low left ventricular ejection fraction and high triglyceride levels, as well as smoking in patients. This indicates the need to improve approaches to postoperative follow-up of patients who have undergone cardiac surgery in order to minimize adverse neurological consequences.

References: Tarasova I.V., Trubnikova O.A., Syrova I.D., Barbarash O.L. Long-term neurophysiological outcomes in patients undergoing coronary artery bypass grafting. Braz J Cardiovasc Surg. 2021;36(5):629-638. DOI: 10.21470/1678-9741-2020-0390