The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

Bionematicidal potential of undecanoic acid against plant root parasitic nematodes

João Trindade ¹, Marina Costa ¹, Leidy Rusinque ^{2,3}, Ana Rita Varela ^{2,4} and Jorge M. S. Faria ^{2,3*}

¹Hercules Laboratory, University of Évora, Largo Marquès de Marialva, 8, 7000-809 Évora, Portugal ²INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquès, 2780-159 Oeiras, Portugal ²GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal ⁴MED Mediterranean Institute for Agriculture, Environment and Development & CHANGE Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Corra, Portugal ⁵Corra, Portugal ⁵Corra

*Correspondence: fariajms@gmail.com

INTRODUCTION & AIM

Plant-parasitic nematodes (PPNs) are a major biotic threat, causing billions of dollars in annual crop losses worldwide. Among them, root-knot nematodes (RKNs, Meloidogyne spp.) are the most damaging, infecting key crops such as rice, soybean, and tomato. These induce root galls that disrupt water and nutrient uptake, leading to stunted growth, wilting, and yield reduction. Traditional control relies on synthetic nematicides, which, despite their efficacy, pose serious environmental and health risks, and contribute to resistance development. Consequently, there is growing interest in natural, alternatives such eco-friendly as plant-derived Medium-chain saturated fatty acids offer promising prospects due to their occurrence. natural biodegradability. low toxicity, and This study investigates the in vitro nematicidal activity of undecanoic acid against M. ethiopica and M. graminicola, using the free-living Cephalobus sp. as an ecological indicator. The results aim to support the development of sustainable, fatty acid-based alternatives for RKN management.

METHODOLOGY

Nematode Growth and Maintenance

- Meloidogyne ethiopica → maintained on Solanum lycopersicum
- *M. graminicola* → maintained on *Oryza sativa*
- Cephalobus sp. → isolated from rice rhizosphere

• Growth Conditions:

- $M.\ ethiopica$: 1 L pots (1:1:1, soil:sand:substrate), 25 \pm 1 °C, 60 d post-inoculation
- M. graminicola: 0.5 L pots (2:1, sand:substrate), 26 \pm 1 °C, 45 d post-inoculation

• Egg & J2 Recovery:

- Eggs extracted using 0.52 % NaOCl; J2 hatched at 25 °C in moist chambers
- Counting under stereomicroscope (Olympus SZX12)

Free-living Nematodes

- Identification via morphology and molecular analysis (18S rDNA, primers 988F/1912R).
- DNA extracted using Qiagen DNeasy Kit; PCR with NZYTaq II Master Mix.
- Sequences analyzed via BLAST (GenBank).
- Cultured in vitro on Schenk & Hildebrandt medium (8 g/L agar, 30 g/L sucrose, pH 5.6).
- Populations increased monoxenically; nematodes recovered after 4 weeks via Baermann method.

Direct-Contact Bioassays

96-well microplates:

- 95 μL suspension (±60 J2s) + 5 μL undecanoic acid (20 mg/mL in methanol).
- Controls: water (natural mortality) and methanol (solvent control).
- Plates sealed, shaken (800 rpm, 1 min), incubated 24 h at 25 ± 1 °C, 60
- Each treatment in triplicate (9 total bioassays)

Data Analysis

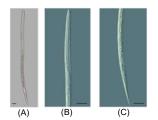
- Mortality (%) = (dead/total J2s) × 100
- Corrected mortality (%) = [(treatment control)/(100 control)] × 100
- Environmental fate (PED %) predicted with EPA EPISuite for undecanoic acid vs. oxamyl & fluopyram

RESULTS & DISCUSSION

Natural mortality for RKNs after 24h in water:

-M. ethiopica = 2.1%±0.1%

-M. graminicola = 0.0%±0.0%

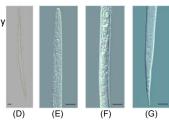

Control RKN mortality by exposing J2 to 5% methanol:

-M. ethiopica = 2.3%±0.1% -M. graminicola = 0.0%±0.0%

Ne

Complete mortality of M. ethiopica and M. graminicola after 24 h RKNs mostly unaffected by methanol as a carrier agent for undecanoic acid.

Nematode	PWN mortality	Nematicidal strength	
M. ethiopica	100.0±0.0	Strong	
M. graminicola	100.0±0.0	Strong	
Cephalobus sp.	17.1±0.5	Low/inactive	


RKN control

- (A) intact internal organization
- (B) Anterior region with distinct stylet and esophageal structures
- (C) Posterior region with granular intestinal content

RKN with1 mg/ml of undecanoic acid

- (D) Internal body disruption and loss of transparency
 - (E) Median bulb and esophageal structures barely distinguishable
 - (F) Extensive vacuolization and disintegration of internal organs

(G) Disrupted tissues and a shrunken tail

Predicted environmental distribution (PED) (%)

Compound	Air	Water	Soil	Sediment	
Undecanoic acid	2.7	28.2	68.9	0.2	
Oxamyl	0.0	35.0	64.9	0.1	
Fluopyram	0.0	2.7	80.3	17.0	
п					

Undecanoic acid may behave similarly to oxamyl and fluopyran, although differences in partitioning suggest that undecanoic acid may behave distinctly in certain environments.

CONCLUSION

Undecanoic acid achieved complete mortality of M. ethiopica and M. graminicola 12 within 24 h at 1 mg/ml and only caused minor mortality in the non-target, free-living nematode Cephalobus sp., indicating a degree of specificity towards root-knot nematodes.

The environmental modeling suggested similar behavior to conventional nematicides oxamyl and fluopyram.

Undecanoic acid shows promising potential as a selective biopesticide.

FUTURE WORK / REFERENCES

Further research needed on environmental persistence, ecological risks and field-level efficacy.

