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Abstract 

Algerian coal, traditionally exploited as a fossil fuel, can be valorized as a nanostructured 

carbon source for sustainable technologies. Reinterpreted physicochemical data highlight 

porous morphology, nanocrystalline carbon (~18 nm), and diverse functional groups. 

These features enable practical applications in adsorption for environmental remediation, 

coal-supported catalysis, energy storage electrodes, and polymer nanocomposites. New 

statistical analyses and schematic representations emphasize functionality rather than raw 

characterization, distinguishing this work from earlier studies. By positioning coal within 

a circular economy framework, this study demonstrates its potential as a renewable, low-

cost nanocarbon material contributing to green chemistry and advanced material design. 

Keywords: Algerian coal; nanostructured carbon; adsorption; catalysis; nanocomposites; 
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1. Introduction 

Coal, historically central to energy production, is increasingly marginalized due to 

its environmental footprint. However, coal is also a carbon-rich, structurally complex 

mineral that can be transformed into functional nanomaterials. Recent work on Algerian 

coal revealed nanoscale porosity, crystallinity, and functional groups that make it a valu-

able raw material for sustainable applications (Ferfar et al., 2024; Xie et al., 2024; Luo et 

al., 2024). This study shifts from description to application-oriented interpretation, show-

ing how intrinsic features of Algerian coal can be harnessed in remediation, catalysis, en-

ergy storage, and composite engineering. The aim is to provide a new vision for coal val-

orization within Algeria’s circular economy strategies. 

2. Materials and Method 

Coal samples were collected from Algerian deposits and analyzed by SEM, XRD-

Rietveld refinement, FTIR, and Raman spectroscopy. Detailed procedures are available in 

Ferfar et al. (2024) see also Zhang et al., 2023 for activation/templating strategies. In this 

work, characterization results are reprocessed into statistical and conceptual 
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representations (histograms, ratio charts, correlation heatmaps, schematic diagrams) to 

emphasize functional applications rather than duplicating raw spectra and images. 

3. Reinterpreted Characterization Results and Discussion 

3.1. Particle Size Distribution 

SEM observations revealed heterogeneous particle sizes. Instead of micrographs, 

Figure 1 presents a histogram of simulated particle size distribution, highlighting broad 

dispersion (10–500 µm). This heterogeneity supports versatile adsorption pathways (Xie 

et al., 2024). 

 

Figure 1. Bar chart of crystallite sizes (C vs. SiO2). 

3.2. Crystallinity and Phase Composition 

Rietveld refinement indicated a nanocrystallite carbon phase (~18 nm) with minor 

SiO2 impurities. Figure 2 (bar chart) shows crystallite sizes, while Figure 3 (pie chart) 

illustrates phase distribution (C 98.8%, SiO2 1.2%). High crystallinity supports 

electrochemical conductivity and catalytic stability (Shi et al., 2021; Huan et al., 2024). 

 

Figure 2. Pie chart of phase composition. 
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Figure 3. Histogram of simulated particle size distribution. 

3.3. Raman Spectroscopy 

The D (~1350 cm−1) and G (~1586 cm−1) bands reveal a mix of disordered and graphitic 

carbon. The ID/IG ratio (Figure 4) quantifies the balance between conductivity and 

reactivity, consistent with other coal-derived nanocarbons (Shi et al., 2021; Singh et al., 

2023). 

 

Figure 4. Raman ID/IG ratio bar chart. 

3.4. FTIR Functional Groups 

FTIR confirmed hydroxyl, carbonyl, and C–Si bonds. Instead of repeating spectra, 

Table 1 lists key peaks. These functionalities favor polymer integration and chemical 

activation for catalysis (Ferfar et al., 2024; Sultana et al., 2022). 

Table 1. Raman and FTIR key features. 

Feature Value(s) (cm−1) 

Raman D band 1350.16 

Raman G band 1586.01 

FTIR peaks 667.19; 1975.49; 2031.40; 2158.13; 2568.14; 2922.23 

3.5. Correlation of Parameters 

To highlight interrelations, Figure 5 shows a correlation heatmap linking crystallite 

size, microstrain, and phase fractions. Such multi-parameter analysis supports predictive 

material design and circular economy frameworks (Xie et al., 2024; Jiang et al., 2024). 
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Figure 5. Correlation heatmap of structural parameters. 

4. Applications of Nanostructured Algerian Coal 

4.1. Adsorption and Environmental Remediation 

Coal porosity and surface groups facilitate adsorption of heavy metals, dyes, and 

gases. Figure 6 presents a schematic adsorption diagram showing pollutant capture. 

Compared with conventional activated carbons, Algerian coal is a cost-effective precursor 

for adsorption processes (Qiu et al., 2022; Sultana et al., 2022). Its regeneration potential 

also makes it suitable for circular water treatment systems (Xie et al., 2024). 

 

Figure 6. Schematic of pollutant adsorption by porous coal. 

4.2. Catalysis and Green Chemistry 

Nanocrystallinity and surface functionalities support catalysis. Figure 7 shows coal-

supported catalysis, where nanoparticles immobilized on coal surfaces drive biomass 

conversion or hydrogen production. Coal-derived catalysts could reduce reliance on 

imported supports (Luo et al., 2024; Jiang et al., 2024). Coal-based catalysts are emerging 

as sustainable options for CO2 reduction and biofuel upgrading. 

 

Figure 7. Schematic of coal-supported catalysis pathway. 

4.3. Energy Storage Devices 

Coal-derived carbons provide both conductivity (graphitic domains) and redox 

reactivity (disordered domains). Figure 8 illustrates a coal-based electrode in a 



Chem. Proc. 2025, x, x FOR PEER REVIEW 5 of 7 
 

 

supercapacitor. With appropriate activation, Algerian coal could become a low-cost 

electrode material for Li-ion and Na-ion batteries (Shi et al., 2021; Zhang et al., 2023; Huan 

et al., 2024). Similar porous Carbons have achieved specific capacitances exceeding 250 F 

g−1 (Zhu et al., 2022). 

 

Figure 8. Coal-derived carbon electrode for supercapacitors. 

4.4. Polymer Nanocomposites 

Coal nanoparticles enhance polymer matrices, improving mechanical and barrier 

properties. Figure 9 schematizes a coal–polymer nanocomposite, where surface 

functionalities ensure strong interfacial bonding (Yang & Li, 2020; Singh et al., 2023). 

Applications include construction, packaging, and lightweight engineering. 

 

Figure 9. Coal-based nanoparticles reinforcing polymer composites. 

5. Circular Economy Framework 

Algerian coal can transition from energy exploitation to sustainable material 

valorization. Figure 10 (conceptual framework) integrates coal → nanostructured features 

→ functional properties → applications → circular economy. This reframing aligns with 

global decarbonization and adds local economic value (Xie et al., 2024; Jiang et al., 2024). 

 

Figure 10. Conceptual framework: coal to circular economy applications. 

  



Chem. Proc. 2025, x, x FOR PEER REVIEW 6 of 7 
 

 

6. Conclusions 

Reinterpreted data confirm that Algerian coal offers nanoscale crystallinity, porosity, 

and functional chemistry. Presented in statistical and schematic forms, these features 

demonstrate clear application pathways in adsorption, catalysis, energy storage, and 

nanocomposites. Future work should include experimental validation of adsorption 

isotherms, electrode cycling tests, and composite performance, enabling Algerian coal to 

be positioned as a renewable nanocarbon resource within circular economy strategies. 
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