The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

Nanostructured Algerian Coal: A Sustainable Carbon Source for Advanced Synthetic **Applications**

Meriem Ferfar^{1*}, Youssouf Driouche¹, Amina Dridi¹, Souad Narsis¹, El Fahem Sakher², Aissa Benselhoub¹ 1 Environmental Research Center (CRE), Annaba, 23000, Algeria 2 Laboratory of Energy, Environment and Information System (LEEIS), Department of Material Science, Adrar, Algeria * Correspondence: m.ferfar@cre.dz

INTRODUCTION & AIM

Coal, historically central to energy production, is increasingly marginalized due to its environmental footprint. However, coal is also a carbon-rich, structurally complex miner-al that can be transformed into functional nanomaterials. Recent work on Algerian coal revealed nanoscale porosity, crystallinity, and functional groups that make it a valuable raw material for sustainable applications (Ferfar et al., 2024). This study shifts from de-scription to application-oriented interpretation, showing how intrinsic features of Algeri-an coal can be harnessed in remediation, catalysis, energy storage, and composite engi-neering. The aim of this work is to reinterpret the physicochemical characterization of Algerian coal by transforming raw spectroscopic and structural data into statistical, graphical, and conceptual representations.

METHOD

Coal samples were collected from Algerian deposits and analyzed by SEM, XRD-Rietveld refinement, FTIR, and Raman spectroscopy. Detailed procedures are available in Ferfar et al. (2024). In this work, characterization results are reprocessed into statistical and conceptual representations (histograms, ratio charts, correlation heatmaps, schematic diagrams) to emphasize functional applications rather than duplicating raw spectra and images.

RESULTS & DISCUSSION

1. Particle Size Distribution

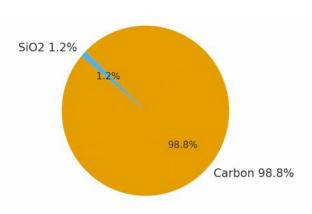



Figure 1. Bar chart of crystallite sizes (C vs SiO₂).

2. Crystallinity and Phase Composition

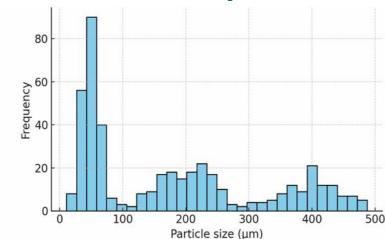


Figure 2. Pie chart of phase composition.

Figure 3. Histogram of simulated particle size distribution.

3. Raman Spectroscopy and FTIR Functional Groups

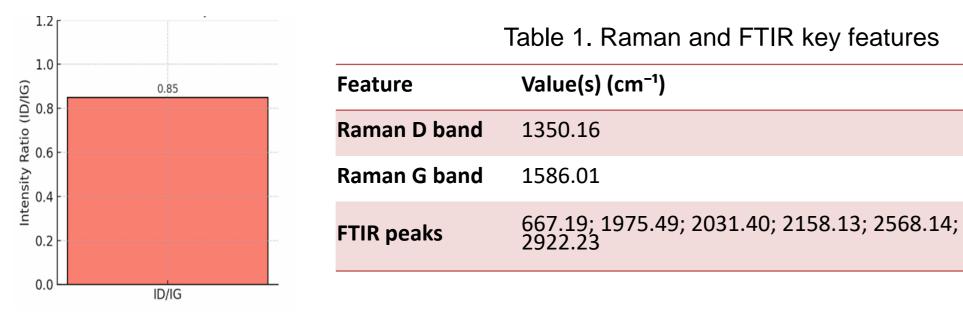


Figure 4. Raman ID/IG ratio bar chart.

4. Correlation of Parameters

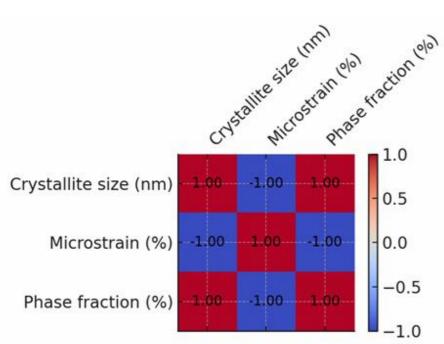
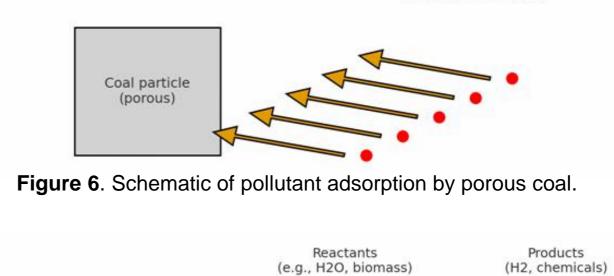



Figure 5. Correlation heatmap of structural parameters.

Applications of Nanostructured Algerian Coal

Catalyst NP Coal surface

Figure 7. Schematic of coal-supported catalysis pathway.

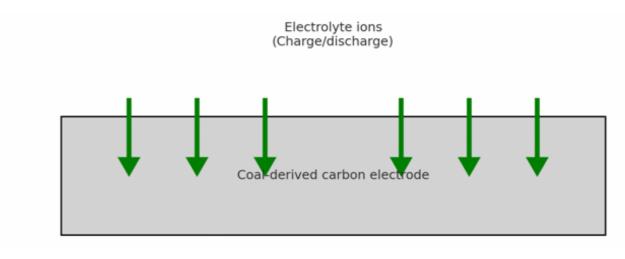


Figure 8. Coal-derived carbon electrode for supercapacitors.

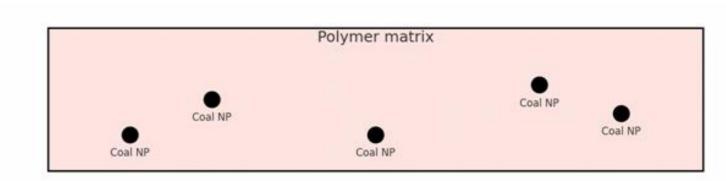


Figure 9. Coal-based nanoparticles reinforcing polymer composites.

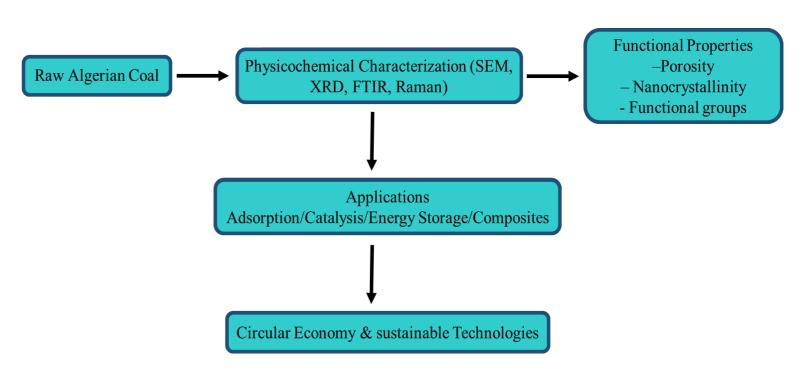


Figure 10. Conceptual framework: coal to circular economy applications.

CONCLUSION

Reinterpreted data confirm that Algerian coal offers nanoscale crystallinity, porosity, and functional chemistry. Presented in statistical and schematic forms, these features demonstrate clear application pathways in adsorption, catalysis, energy storage, and nanocomposites. Future work should include experimental validation of adsorption isotherms, electrode cycling tests, and composite performance, enabling Algerian coal to be positioned as a renewable nanocarbon resource within circular economy strategies.

REFERENCES

Ferfar, M., Sakher, E., Bouras, A., Benselhoub, A., Hachemi, N., Massaoudi, M., Dovbash, N., & Bellucci, S. (2024). Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials. Technology Audit and Production Reserves, 1(3), 29–36. https://doi.org/10.15587/2706-

Marsh, H., & Rodríguez-Reinoso, F. (2006). Activated Carbon. Elsevier. https://doi.org/10.1016/B978-0-08-044463-5.X5000-3

Chemical Engineering, 10, 107–122. https://doi.org/10.1016/j.jece.2021.107122

Zhu, J., Xiao, X., Zheng, W., & Li, Y. (2022). Coal-based carbons for supercapacitor electrodes: Structures, properties and performance. Carbon, 188, 225–247.

Lin, J., Ma, R., & lijima, T. (2021). Coal-derived catalysts for sustainable chemical processes. Applied Catalysis B: Environmental, 299, 120668. https://doi.org/10.1016/j.apcatb.2021.12066 Yang, S., & Li, H. (2020). Carbon-based nanocomposites for multifunctional applications. Journal of Materials Science, 55, 14625–14647. https://doi.org/10.1007/s10853-020-

Xie, M. S., Zhang, Y., Li, X., & Wang, J. (2024). Development and challenges of coal-based nanocarbon materials for water treatment and environmental applications.

Environmental Science and Pollution Research, 31, 1-18. https://doi.org/10.1007/s11356-024-32798-5

Luo, H., Chen, Y., & Wang, P. (2024). Catalytic conversion of carbon dioxide using coal-based carbon materials: progress and perspectives. RSC Advances, 14, 15200–

15218. https://doi.org/10.1039/D4RA02067A Zhang, Y., Liu, T., Sun, H., et al. (2023). An effective strategy to synthesize well-designed coal-derived activated carbons for supercapacitor electrodes. Journal of Materials

Chemistry A, 11, 14500-14512. https://doi.org/10.1039/D3TA02055G Shi, M., Huang, L., Zhao, N., et al. (2021). Coal-derived porous activated carbon with ultrahigh surface area and excellent electrochemical performance for supercapacitors.

Journal of Power Sources, 482, 229–240. https://doi.org/10.1016/j.jpowsour.2020.229240 Huan, X., Gao, L., Sun, R., et al. (2024). Influence of tectonically deformed coal on surface properties and potential for high-performance carbon materials. ACS Omega, 9,

13700-13712. https://doi.org/10.1021/acsomega.4c00860

Sultana, M., Rahman, M., & Akter, S. (2022). A review on chemically modified activated carbon for enhanced adsorption of dyes and heavy metals. Journal of Water Process Engineering, 46, 102-119. https://doi.org/10.1016/j.jwpe.2022.102119 Jiang, T., Li, H., & Wang, J. (2024). Solid waste-derived carbonaceous catalysts for environmental and energy applications: approaches and challenges. Catalysis Today,

405, 30-50. https://doi.org/10.1016/j.cattod.2023.10.015 Singh, S. B., Kumar, R., & Patel, A. (2023). Coal-derived graphene-like materials and their applications: synthesis, properties and prospects. Energy & Environmental

Science, 16, 4200-4216. https://doi.org/10.1039/D3EE01822E Qiu, L., Zhang, X., & Wang, B. (2022). Adsorption of heavy metals by activated carbon: effects of natural organic matter and regeneration strategies. Journal of Environmental