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Abstract 

Phosphoinositide 3-kinase (PI3K) represents a pivotal therapeutic target implicated in cel-

lular proliferation, metabolic processes, and oncogenic mechanisms. This research delin-

eates a comprehensive in silico methodology aimed at identifying effective and pharma-

cokinetically favorable inhibitors of PI3K. Structure-based molecular docking was exe-

cuted targeting the ATP-binding pocket of PI3K, revealing that the highest-ranked com-

pound, MOL ID: 11325, demonstrated a significant binding affinity, reflected by a docking 

score of –8.558 kcal/mol. ADMET and SwissADME profiling confirmed that molecule 

11325 is Lipinski-compliant, P-gp non-substrate, has a bioavailability score of 0.55, no 

PAINS or Brenk alerts, and a favorable synthetic accessibility (2.68), supporting its drug-

likeness and development potential. A 100 ns molecular dynamics simulation confirmed 

the stability of the PI3K–ligand complex, demonstrating minimal deviations in root mean 

square deviation (RMSD) and root mean square fluctuation (RMSF). The binding free en-

ergy, determined through the MMGBSA method, exhibited a favorable value (ΔG_bind ≈ 

–58.6 kcal/mol), thereby corroborating the ligand’s affinity. The FEL analysis revealed dis-

tinct low-energy states, while the PCA indicated minimal structural fluctuations, confirm-

ing a stable and specific binding mode. Molecule 11325 was designated as a novel, drug-

like, and dynamically stable PI3K inhibitor by this integrated computational approach, 

indicating that it requires additional preclinical validation for therapeutic development. 

Keywords: PI3K Inhibitor; molecular docking; SwissADME; FEL; MMGBSA; PCA 

 

1. Introduction 

Phosphoinositide 3-kinases (PI3Ks) are an important group of lipid kinases that add 

a phosphate group to the 3′-hydroxyl group of phosphatidylinositols [1]. This makes sec-

ond messengers that are needed to control many cellular processes, such as growth, me-

tabolism, movement, and survival. Receptor tyrosine kinases and -protein-coupled recep-

tors turn on Class I PI3Ks [2,3]. Abnormal signaling in these pathways has been firmly 

associated with the onset of cancer, metabolic disorders, and immune system dysfunction. 

As a result, PI3K and its downstream effectors, such as AKT and mTOR, are recognized 

as critical components in cancer biology, making the PI3K/AKT/mTOR pathway one of 

the most thoroughly examined targets in the development of oncology therapies [4–6]. 

Genomic studies reveal that alterations such as mutations, amplifications, and 
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dysregulation of PI3K isoforms are common in both solid tumors and hematologic malig-

nancies. Mutations that activate the PIK3CA gene, which encodes the p110α catalytic sub-

unit, are frequently found in breast, colorectal, and endometrial cancers [7–9]. The PI3Kδ 

and PI3Kγ isoforms are crucial in B-cell malignancies and immune system disorders, un-

derscoring the promise of isoform-selective inhibitors [10]. Despite this potential, the de-

velopment of therapeutically effective PI3K inhibitors has faced considerable challenges, 

including dose-limiting toxicities, insufficient selectivity, and adaptive resistance mecha-

nisms that hinder the durability of response [11,12]. Currently, several PI3K inhibitors 

have received regulatory approval, including idelalisib, which specifically targets PI3Kδ; 

copanlisib, a pan-PI3K inhibitor that is most effective against PI3Kα/δ; duvelisib; and al-

pelisib, recognized as the first selective PI3Kα inhibitor approved for PIK3CA-mutated 

breast cancer [13]. Even though these drugs show that PI3K is a good target for treatment, 

clinical studies have shown that they have big problems with potency, isoform selectivity, 

tolerability, and pharmacokinetic properties [14,15]. The identified limitations underscore 

the ongoing necessity to identify novel scaffolds that exhibit improved binding selectivity 

and favorable drug-like properties. In the last twenty years, computational drug design 

has changed how we find kinase inhibitors. High-throughput screening is helpful, but it 

needs a lot of resources and is often limited by how much chemical space can be explored. 

In silico methods like molecular docking, molecular dynamics (MD), pharmacophore 

modeling, and free energy calculations, on the other hand, make it easier to look at ligand–

protein interactions at the atomic level. This assists scientists in enhancing lead com-

pounds [16,17]. Molecular docking is especially advantageous for PI3K due to the highly 

conserved ATP-binding cleft, which exhibits subtle isoform-specific variations in hydro-

phobic pockets and hinge-binding motifs that can be exploited for selectivity [16,18]. Later 

molecular dynamics simulations give us more information about conformational flexibil-

ity, ligand stability, and solvent interactions, which makes static docking predictions more 

accurate [19]. Free energy methods, including MM-GBSA [20] and thermodynamic inte-

gration, provide a quantitative evaluation of binding affinity. Principal component anal-

ysis (PCA) and free energy landscape (FEL) mapping, on the other hand, make it easier to 

understand conformational ensembles that are important for ligand recognition [21]. Re-

cent publications have effectively utilized these integrated computational methodologies 

to discover novel scaffolds for PI3K and associated kinases. For example, small molecules 

with two hinge-binding hydrogen bonds and van der Waals interactions in hydrophobic 

subpockets have shown better binding affinity and selectivity. SwissADME and ADMET 

profiling techniques provide preliminary insights into the risks associated with pharma-

cokinetics and toxicity, thereby reducing the incidence of failures in lead optimization. 

There have been some improvements, but many modern PI3K inhibitors still have issues 

that make them hard to use in many clinical settings [22–28]. Interacting with other kinases 

that aren’t the target can cause serious side effects, such as high blood sugar, stomach 

problems, and a weaker immune system. Resistance mechanisms, including pathway re-

activation or compensatory signaling via parallel kinases, diminish long-term efficacy. So, 

next-generation inhibitors need to bind tightly, have good ADME properties, be less toxic, 

and only work on certain isoforms. A structure-guided approach makes these inhibitors 

better. For example, the right hinge-binding motifs, a good balance of polarity and lipo-

philicity, and a rigid scaffold are all important for success. Ligands that create stable hy-

drophobic interactions with essential residues (e.g., Trp812, Tyr867, Ile831/879/881 in 

PI3Kα) and transient, oriented hydrogen bonds with hinge residues like Val882 are espe-

cially interesting [14,29–32]. In kinase pharmacology, these motifs are clearly defined and 

are often associated with greater selectivity and enthalpic binding benefits [32]. This study 

uses a multilayer in silico pathway to find and confirm new PI3K inhibitors, which im-

proves the existing framework. To target the ATP-binding pocket of PI3K, docking based 
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on structure was used. The results show that there are ways to change the scaffold, such 

as making hinge-binding interactions better and making hydrophobic substituents longer, 

which is important for the strategic design of inhibitors that are important for health. 

2. Methodology 

2.1. Molecular Docking 

Using AutoDock 4.2 [33,34], molecular docking was done to guess how ligands 

would fit into the ATP-binding site of Phosphoinositide 3-kinase (PI3K; PDB ID: 1E7U) 

[35]. We got the crystal structure from the RCSB Protein Data Bank and got it ready by 

taking out the crystallographic water molecules and co-crystallized ligands. Using Auto-

Dock Tools (ADT), polar hydrogens were added, and Gasteiger charges were given. Be-

fore docking, the MMFF94 force field [36] was used to minimize the ligands 

(https://www.chemdiv.com/catalog/diversity-libraries/3d-diversity-natural-product-like-

library/). The docking grid was 60 × 60 × 60 Å with a 0.375 Å space between each point. It 

was centered on the ATP-binding cleft. The Lamarckian Genetic Algorithm (LGA) was 

used with 50 independent runs. Based on the docking score and interaction profile [37], 

the pose with the highest score was chosen. We used PyMOL and LigPlot+ to see how 

proteins and ligands interacted with each other. 

2.2. Molecular Dynamics Simulation 

We used the Desmond v6.3 module (Schrodinger, LLC) to run molecular dynamics 

(MD) simulations to see how stable docked complexes were. A TIP3P orthorhombic water 

box with a 10 Å buffer was used to solvate each protein–ligand system. To balance the 

charges, counterions were added, and 0.15 M NaCl was added to mimic normal body 

conditions. The OPLS_2005 force field was used to make the system as small as possible. 

After minimization, equilibration was performed under NVT (constant number, volume, 

temperature) and NPT (constant number, pressure, temperature) ensembles for 2 ns each 

[38–40]. Then, the Nose–Hoover thermostat and Martyna–Tobias–Klein barostat were 

used to run production simulations for 100 ns at 300 K and 1 atm. Desmond’s analysis 

tools were used to figure out the Root Mean Square Deviation (RMSD), Root Mean Square 

Fluctuation (RMSF), Radius of Gyration (Rg), and hydrogen bond occupancy for the tra-

jectory analyses [41–45]. 

2.3. MM-GBSA Binding Free Energy Calculations 

The MM-GBSA (Molecular Mechanics/Generalized Born Surface Area) method in 

Schrödinger’s Prime module was used to figure out the binding free energy. Every 10 ns, 

snapshots were taken from MD trajectories, and then energy minimization was done on 

them. The VSGB 2.0 solvation model and the OPLS_2005 force field were used. We used 

the following equation to figure out the binding free energy (ΔG_bind): 

ΔGbind = Gcomplex − (Gprotein + Gligand) ΔG_{bind} [46] = G_{complex} - (G_{protein} + G_{ligand}) 

ΔGbind = Gcomplex − (Gprotein+Gligand). 
 

where GcomplexG_{complex} Gcomplex, GproteinG_{protein}Gprotein, and 

GligandG_{ligand}Gligand are the minimized free energies of the complex, protein, and 

ligand, respectively. Energy decomposition was conducted to assess the contributions 

from van der Waals, electrostatic, solvation, and lipophilic interactions [47,48]. 

2.4. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) was employed to identify the predominant col-

lective motions of the protein-ligand complexes during simulations. The trajectories were 
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aligned with the reference structure, and a covariance matrix of atomic positional fluctu-

ations (Cα atoms) was created. Eigenvectors and eigenvalues were computed, and the 

initial two principal components (PC1 and PC2) were examined. We plotted projections 

of MD snapshots along the PC1–PC2 axes to find conformational clusters and metastable 

states [49,50]. 

2.5. Free Energy Landscape (FEL) 

The Free Energy Landscape (FEL) was created by projecting conformation ensembles 

onto the first two principal components (PC1 and PC2) from MD trajectories. We used the 

Boltzmann relation to find free energy (ΔG): 

ΔG(x,y) = −RT ln P(x,y) ΔG(x,y) = -RT ln P(x,y) ΔG(x,y) = −RTlnP(x,y)  

where P(x,y) is the probability distribution along PC1–PC2, R is the universal gas constant, 

and T is the temperature (300 K). Stable conformational states were linked to low-energy 

basins, while shallow local minima showed metastable states. GROMACS 2020.4 made 

the FEL plots, and OriginPro 2022 showed them [43,51,52]. 

3. Results and Discussion 

3.1. Molecular Docking and MMGBSA Study 

In the ATP-binding pocket of Phosphoinositide 3-kinase (PI3K; PDB: 1e7u), com-

pound 11325 shows a well-structured and chemically compatible way to bind. The dock-

ing score of –8.558 kcal/mol supports this, as it shows a strong predicted affinity for a 

kinase active site of this size and hydrophobic nature. According to the contact map, a 

hydrophobic “support” made up of TRP812, ILE831, TYR867, ILE879, and ILE881 stabi-

lizes the conformation at very short edge-to-edge distances (3.2–3.8 Å; specifically, 

TRP812 3.40 Å, ILE831 3.79 Å, TYR867 3.23 Å, ILE879 3.60 Å, and ILE881 3.69 Å). This lets 

the ligand’s nonpolar scaffold make the most of van der Waals interactions and keep the 

pocket from getting too wet (see Table 1). 

Table 1. Depiction of Docking interactions for the ligand 11325 with Phosphoinositide 3-kinase 

(PI3K) receptor (pdb: 1e7u). 

Hydrophobic Interactions 

1 812A TRP 3.40 14222 9843 

2 831A ILE 3.79 14228 10125 

3 867A TYR 3.23 14227 10733 

4 879A ILE 3.60 14233 10901 

5 881A ILE 3.69 14218 10934 

Hydrogen Bonds 

1 882A VAL 1.85 2.75 145.58 14221 [Nam] 10950 [O2] 

2 882A VAL 1.98 2.98 172.45 10947 [Nam] 14212 [Nar] 

10.1016/j.bmcl.2013.01.072 [53] The specified atom types include ligand Nam protein 

carbonyl O2 and ligand Heteroaromatic/Nam Nar ↔ carbonyl/amide protein. Make the 

case for traditional hinge-like hydrogen bonding, in which the ligand gives to and/or re-

ceives from the hinge residue’s backbone. This interaction motif is recognized to substan-

tially enhance kinase selectivity and enthalpic advantage. The geometry (sub-2.0 Å donor–

acceptor separation and >145° angles) shows that there are strong, directional hydrogen 

bonds that can handle even small changes in the side chain. Two of these interactions help 

“pin” the ligand in a position where its hydrophobic surfaces line up with the nearby 
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nonpolar wall (TRP/TYR/ILE triad). This is why the docking score is so good (see Figure 

1). 

 

 

Figure 1. Portrayal of 3D and surface interactions of ligand 11325 with Phosphoinositide 3-kinase 

(PI3K) receptor (pdb: 1e7u). 

This aligns with the anticipated outcomes of a conformation characterized by proxi-

mate hydrophobic interactions involving TRP812, TYR867, and multiple ILE residues. On 

the other hand, polar solvation (ΔG_bind, SolvGB ≈ +20.51 kcal/mol) and Coulombic in-

teractions (ΔG_bind, Coulomb ≈ +12.13 kcal/mol) are both bad, showing the desolvation 

penalty that happens when polar groups are stuck in a mostly apolar cavity with little 
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charge–charge stabilization. Because MM-GBSA divides its effect between solvation and 

Coulombic parts, the small but helpful hydrogen-bond contribution (ΔG_bind, Hbond ≈ 

−1.08 kcal/mol) probably doesn’t show how important the VAL882 interactions are in a 

qualitative way. Still, the almost linear shape (172.5° for one bond) shows that these inter-

actions have enthalpic benefits that are somewhat canceled out by desolvation, resulting 

in a small net value in the analysis. The small positive “covalent” term (+3.56 kcal/mol) 

shows that 11325 does not have to pay a lot of conformational cost to take on its bound 

shape. This means that constrained internal strain during binding is not very high. The 

energy pattern tells a consistent story: (i) The ligand’s shape and polar surface area fit well 

with a hydrophobic kinase pocket, which improves dispersion (strong negative van der 

Waals interactions) and nonpolar entrapment (negative lipophilicity); (ii) only two high-

quality hinge hydrogen bonds are formed, which is not enough to completely counteract 

the desolvation penalty of all polar groups (positive Solvation Gibbs free energy and Cou-

lombic interactions), but the overall result is still very good; and (iii) the docking score, 

which takes into account pose quality, shape complementarity, and hydrogen bond ge-

ometry, matches the MM-GBSA analysis of dispersion-driven stabilization enhanced by 

specific hinge recognition. From the perspective of medicinal chemistry, the interaction 

map suggests several logical improvements: enhancing the hinge binding (for example, 

by altering pKa or pointing an extra heteroatom in the direction of the VAL882 backbone 

NH/CO) could make the polar terms less harmful by replacing desolvation costs with 

stronger and more numerous protein–ligand hydrogen bonds; or extending hydrophobic 

substituents into accessible lipophilic subpockets close to TRP812/TYR867 could further 

exploit the pocket’s dispersion potential, enhancing the already substantial van der Waals 

and lipophilic terms without appreciably increasing desolvation penalties. But you have 

to be careful not to add hidden unsatisfied polar atoms, which could make SolvGB worse 

and maybe even change the shape of the molecule; on the other hand, too much polarity 

could weaken the hydrophobic driving force that keeps affinity strong. Small para/ortho 

substitutions that keep the planarity may be better than big, branched groups that could 

get in the way of the side chains of ILE879/ILE881, as shown by the narrow hydrophobic 

distances (3.2–3.8 Å). 

Finally, the two identified VAL882 hydrogen bonds, with their ideal geometry, offer 

a promising selectivity mechanism: keeping their vectors while modifying the periphery 

to align with the hydrophobic edge of TYR867 or interact with the face of TRP812 (π–π or 

edge–face interactions with aromatic structures) may increase potency without requiring 

additional desolvation costs. The alignment of the structure-based docking model (hydro-

phobic packing plus two hinge hydrogen bonds) with the energy-based MM-GBSA de-

composition (significantly negative van der Waals and lipophilic contributions, moder-

ately favorable hydrogen bonds, offset by positive solvation and Coulombic terms) gives 

a clear mechanistic explanation for why 11325 can bind to PI3K and a clear guide for how 

to improve affinity and selectivity (see Supplementary Material for MMGBSA results). 

3.2. MD Simulation Analysis 

3.2.1. RMSD 

We ran a molecular dynamics (MD) simulation of ligand 11325 with the Phospho-

inositide 3-kinase (PI3K) receptor (PDB ID: 1e7u) for over 100 ns. The RMSD analysis gives 

us important information about how stable and flexible the complex is. The RMSD figure 

shows that the protein backbone (Cα RMSD) goes through a phase of equilibration that 

lasts about 15 ns before settling down between 2.2 and 2.8 Å. This means that the protein’s 

structure stayed the same during the simulation. In the first 10 ns, the ligand RMSD 

(aligned with the protein backbone) changed a lot. This suggests that the ligand was get-

ting used to its new place in the binding pocket. After about 15 ns, the ligand RMSD stayed 
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between 1.2 and 2.0 Å, with some temporary changes that peaked at about 3.5 Å at the 

end of the simulation. This suggests that the ligand stayed in the pocket but was able to 

change shape, likely because it interacted with the moving side chains in the active site. 

The steady RMSD trend shows that ligand 11325 stayed attached to the PI3K binding cleft 

the whole time during the 100 ns trajectory. These dynamic data raise the docking score 

from −8.558 kcal/mol, which before indicated a strong binding affinity (see Figure 2). 

 

Figure 2. Presentation of Protein: Phosphoinositide 3-kinase (PI3K) receptor (PDB ID: 1e7u) and 

ligand 11325 RMSD variations during 100 ns molecular dynamics simulation. 

The docking interaction profile showed that the residues TRP812, ILE831, TYR867, 

ILE879, and ILE881 had strong hydrophobic contacts with each other. It also showed that 

VAL882 had two strong hydrogen bonds with each other (bond lengths of about 1.85–1.98 

Å, which is perfect for stability). The steady RMSD of the ligand throughout the simula-

tion shows that these interactions were stable. Hydrogen bonds helped keep the ligand in 

place, and hydrophobic residues made sure that the pocket was full and that the ligand 

didn’t get too much solvent. The ligand RMSD going above 3 Å every now and then is 

probably because it moved around in the binding site for a short time, not because it broke 

apart. This is consistent with the inherent flexibility of hydrophobic side chains. The re-

sults of docking and molecular dynamics together show that ligand 11325 binds strongly 

and favorably within the PI3K active site. This is backed up by strong hydrogen bonding 

and hydrophobic interactions, which make it a good candidate for further optimization in 

drug development that targets PI3K. In kinase drug development, similar methods that 

combine docking and molecular dynamics have been widely used to test the stability of 

ligands and the compatibility of receptors and ligands. 

3.2.2. RMSF 

The root-mean-square fluctuation (RMSF) profiles show how much each residue 

moves away from its average location during the trajectory. The Cα RMSF trace you gave 

me (100 ns; y-axis in Å, x-axis as residue index) shows how flexible the PI3K receptor is 

when ligand 11325 is there. The protein doesn’t move much at all, only about 0.6 to 1.4 Å 

across large areas. There are clear peaks that go above 3 Å and up to about 5.5 Å in some 

loop and terminal parts (for example, 110–120, ~240–260, ~300–320, and a cluster at 750–

810). These spikes show that there are loops and chain ends that are open to the solvent, 

but they don’t mean that the ligand is unstable by itself. The residues that make up the 



Chem. Proc. 2025, x, x FOR PEER REVIEW 8 of 15 
 

 

docking-defined binding pocket, TRP812, ILE831, TYR867, ILE879, ILE881, and VAL882, 

are all in an area with an average RMSF that is within the range of 0.8–1.6 Å. There is only 

a small rise at about 810, which means that there is a mobility loop close to Trp812 (see 

Figure 3). 

 

Figure 3. Root Mean Square Fluctuation (RMSF) profile of Cα atoms across protein residues. 

The residues Tyr867, Ile879, Ile881, and Val882 in the downstream pocket don’t 

change much, which means that the active site is well-structured. The docking confor-

mation (score–8.558 kcal/mol) is supported by this pattern. In this conformation, hydro-

phobic residues (TRP812/ILE831/TYR867/ILE879/ILE881) surround the ligand, and two 

short hydrogen bonds to VAL882 (with H-bond donor–acceptor distances of about 1.85–

1.98 Å and angles of about 145–172°) act as stabilizing anchors. The low to moderate RMSF 

for Val882 and nearby residues is what we would expect if H-bonding were going on in a 

hidden kinase pocket. The few high spikes around the pocket (especially at ~780–810) 

probably show how the peripheral loops move when they breathe. These movements 

might change the volume of the pocket for a short time and explain the changes in ligand 

RMSD that happen near the end of the journey without breaking the bond. The RMSF 

map shows that the area around the binding site is hard, and the area around it is flexible. 

This is something that lipid/ATP-site kinases often have in common. This finding supports 

the MD-derived stability of ligand 11325. The anchor residue (Val882) and the hydropho-

bic cage residues stay pretty stable for 100 ns, which matches the good docking energy 

and interaction pattern. 

3.2.3. Analysis of 11325 Phosphoinositide 3-Kinase (PI3K; PDB: 1e7u) Receptor 

Interactions Before and After MD Simulation 

Ligand 11325 was placed in the ATP-binding pocket of PI3K (PDB: 1E7U; see struc-

ture at RCSB: https://www.rcsb.org/structure/1E7U). Its pre-MD posture showed that it fit 

tightly (docking score −8.558 kcal/mol), thanks to a combination of hydrogen bonding and 

hydrophobic interactions. The ligand is held to the hinge region residue Val882 by two 

direct hydrogen bonds. The first is a short donor interaction (H–A = 1.85 Å; D–A = 2.75 Å; 

∠ = 145.6°) between a ligand amide nitrogen (Nam, atom 14221) and a carbonyl oxygen 

on the protein (O2, atom 10950). The second is a nearly linear interaction (H–A = 1.98 Å; 

D–A = 2.98 Å; ∠ = 172.5°) between an aromatic nitrogen on the ligand (Nar, atom 14212) 

and a protein acceptor (atom 10947). Trp812 (3.40 Å), Ile831 (3.79 Å), Tyr867 (3.23 Å), 

Ile879 (3.60 Å), and Ile881 (3.69 Å) make up the hydrophobic shell around these polar 
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anchors. This is how PI3K inhibitors usually attach to hinges. The 2D contact map shows 

that this binding motif is still there and has been improved after molecular dynamics. The 

hinge hydrogen bond to Val882 is still strong (95% occupancy), which shows that the orig-

inal hydrogen-bond geometry was almost perfect and is still the main reason why the 

pose stays stable. A reduced aromatic interaction with Trp812 is observed sporadically 

(7%), indicating edge-to-face π interactions as the indole side chain fluctuates during the 

process (see Figure 4). 

 

Before Simulation 

 

After 100ns Simulation 

Figure 4. Portrayal of 2D interactions of Ligand 11325 with Phosphoinositide 3-kinase (PI3K) recep-

tor (PDB ID: 1e7u) before and after simulation. 

The hydrophobic cage that repels water is still mostly whole. The two ligand rings 

and the chloro-phenyl terminal still have Ile831, Ile879, Ile881, and Tyr867 in them. But 
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Met804 and Met953 are close enough to each other that they are temporarily interacting 

with each other through van der Waals forces. This supports the ligand core’s ongoing 

desolvation. MD makes a network of structured water next to the amide/ester area that is 

open to the solvent. Water molecules connect the ligand carbonyl/ether oxygens to Asp884 

and Ala885 (4–29% of the time), then move toward Lys890 through more water molecules 

(4%), and sometimes interact with Thr887 (5%). Water interactions explain why only one 

of the two initial direct Val882 hydrogen bonds is mostly occupied. Instead of two lasting 

direct connections, rearranging the local area makes one stable hinge bond and one dy-

namic hydrogen bond/solvent relay. In short, MD helps 11325 take on a stable shape with 

hinges that keep hydrophobic interactions, a strong Val882 hydrogen bond, extra π-stack-

ing with Trp812, and a flexible water network around Asp884/Ala885. This network could 

be used to make it stronger or more selective, for example, by making polar changes to 

stabilize the water bridge or lipophilic changes to make it interact better with Ile879/Ile881. 

4. ADME Study 

A comparative ADMET analysis of the four top-docked compounds (11393, 4153, 

11345, and 4162) reveals that compound 11325 possesses distinct advantages that render 

it an optimal candidate for PI3K inhibition. The best docking score for compound 11393 

is −8.688 kcal/mol, which is a little bit better than the score for compound 11325, which is 

−8.55 kcal/mol. But the way it looks and works isn’t quite right. Compound 11393 is drug-

like and has a molecular weight of 373.42 Da. However, its high lipophilicity (consensus 

logP = 4.43) and low polar surface area (TPSA = 46.9 Å2) suggest that it may be too perme-

able and may have trouble dissolving. It also doesn’t meet two of the lead-likeness criteria 

and one of the Lipinski criteria, which makes it less likely to be a good candidate for a full 

drug. The docking score for compound 4153 is −8.663 kcal/mol, which means it is very 

close to being the most drug-like. The weight of its molecules is higher (454.75 Da). It 

doesn’t meet two of Lipinski’s criteria for lead-likeness, and it has a high lipophilicity 

(logP = 4.99), which means it is less likely to be chemically tractable and easy to take by 

mouth. Compound 11345 is a little heavier (399.48 Da) and has three hydrogen bond ac-

ceptors instead of four, like 11325. It doesn’t break any of Lipinski’s rules. It has a lipo-

philic profile that is too high, with a logP of 4.50. This could make it hard for the body to 

dissolve and stay stable. Compound 4162 has a great docking score (−8.339 kcal/mol), but 

it has the same problems because it is very lipophilic (logP = 4.75) and it doesn’t meet one 

of Lipinski’s criteria. 11325 is one of a kind because it has a balanced consensus logP of 

3.13. This means that it has the right amount of lipophilic and hydrophilic properties to 

let enough molecules pass through the membrane while still being able to dissolve. It has 

a TPSA of 65.38 Å2, which is more than the others but still less than 140 Å2. This helps the 

intestines absorb the medicine and not too much through the CNS, which is what you 

want for an anticancer target like PI3K. It is okay to keep working on 11325 because it only 

has one lead-likeness violation and no Lipinski violations. It also has a low score of 2.68 

for how easy it is to make synthetic. People believe that the intestines will better absorb 

all five chemicals and that they will be able to cross the blood-brain barrier more easily. 

But compound 11325 is the best because it has a better balance between polarity and lipo-

philicity. This means that it is less likely to cause off-target toxicity and poor solubility. 

None of the compounds had PAINS warnings, but 11325 does have a small Brenk alert. 

This could be because it has a chloro group, which is common and easy to work with in 

ki-nase inhibitors. It is possible that all of the drugs will stop different CYP isoforms from 

working, which could be bad. But 11325 might be more stable in the body and less likely 

to be quickly removed or cause off-target metabolic inhibition because it is less lipophilic 

than its analogs. In conclusion, 11325 may not have the highest docking score, but it has 

the best mix of drug-like physical and chemical properties, no major rule violations, 
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moderate flexibility (7 rotatable bonds), a good balance between solubility and permea-

bility, and is easy to make. This strongly supports its claim to be the best hit molecule for 

blocking PI3K (see ADME Results in the Supplementary Material Table S1). 

5. PCA & Free Energy Landscape Study 

When you put together docking analysis with PCA and Free Energy Landscape (FEL) 

data, you get a complete picture of how stable ligand–protein interactions are and how 

they change over time during molecular simulation. The first docking of ligand molecule 

11325 with the PI3K receptor (pdb: 1e7u) resulted in a favorable binding score of −8.558 

kcal/mol, indicating a strong affinity and the possibility of stable complex formation. 

There are a lot of hydrophobic contacts that make up the docking interactions, mostly with 

residues TRP812, ILE831, TYR867, ILE879, and ILE881. These contacts create a pocket that 

keeps the ligand in place. We also found strong hydrogen bonds with VAL882. These 

bonds had short donor–acceptor distances (1.85–1.98 Å) and bond angles that were almost 

straight (145–172°). This means that the hydrogen bonding is strong and directed, which 

keeps the ligand stable in the active site. After the simulation, the PCA and FEL analyses 

check the static docking predictions dynamically. The PCA projections show clear confor-

mational clusters, which means that the protein-ligand complex moves through a number 

of metastable states during the simulation, even though the docking connections are 

strong (see Figure 5). 

  

Figure 5. Display of PCA projection of molecular dynamics trajectories highlighting conformational 

clustering across frames. 

The two main basins in the PC1–PC2 space show the conformational equilibrium of 

the protein–ligand system. This means that the binding pocket and ligand orientation 

have shifted slightly, but the overall stability remains unchanged. The FEL data back up 

this moving picture by showing a deep free energy basin with an RMSD of about 0.20–

0.30 nm and an RG of about 2.56–2.59 nm. This indicates that the system predominantly 

investigates a stable, restricted conformational ensemble. The ligand’s hydrophobic inter-

actions create a low-energy environment that encourages compactness (as shown by the 

RG), while stable hydrogen bonds help to reduce structural errors (as shown by the RMSD 

stability). The docking data and free energy landscape show that the ligand-receptor com-

plex is not only firmly attached during the static docking phase, but it also stays stable in 

dynamic conditions that mimic real life. The free energy funnel demonstrates that the 

binding conformation is thermodynamically advantageous. The shallow neighboring 

minima in the FEL indicate that the molecule is capable of conformational change, which 

may be significant for the regulation of PI3K or for ligand adaptation (see Figure 6). 
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Figure 6. Presentation of 2D and 3D Gibbs free energy surfaces highlight stable structural basins 

and transitions in the protein ensemble. 

The combination of docking (binding affinity and interaction fingerprint), PCA (con-

formational partitioning), and FEL (thermodynamic stability) leads to a clear conclusion: 

ligand 11325 creates a strong interaction network in the PI3K binding site, undergoes lim-

ited but functionally important conformational changes, and mostly stays in a stable free 

energy basin, making it a strong candidate for a PI3K inhibitor. 

6. Conclusions 

This study finds that compound 11325 is a good candidate for selective PI3K inhibi-

tion. It has a unique set of physicochemical, pharmacokinetic, and stability properties that 

set it apart from other similar compounds found through structure-based docking. Instead 

of just focusing on improving docking scores, this study uses docking, MM-GBSA energy 

decomposition, molecular dynamics, free energy landscape analysis, and ADMET profil-

ing to give a full mechanistic story and make sure it is useful in the real world. The dock-

ing results showed that 11325 has a strong binding affinity of –8.558 kcal/mol because it 

has a good mix of van der Waals interactions, lipophilic packing, and hinge-directed hy-

drogen bonding with Val882. These three things work together to keep the ligand in a 

specific kinase-recognition motif. The molecular dynamics trajectory showed that these 

connections are permanent because the RMSD/RMSF values stayed the same and the hy-

drophobic cage made by TRP812, ILE831, TYR867, ILE879, and ILE881 didn’t break very 

often. This persistence shows that the ligand can handle changes in shape. Principal com-

ponent analysis (PCA) shows that the ligand can only cluster in certain shapes, and free 

energy landscape (FEL) data shows that there is a deep, stable energy basin that suggests 

thermodynamic favourability. It’s important to note that 11325 had a drug-like profile that 

was better than that of other high-scoring analogs. It had a lipophilicity of 3.13, a polarity 

of 65.38 Å2, and a synthetic accessibility of 2.68. There were no Lipinski violations and no 

major structural alerts. All of this makes it more likely that the body will absorb it, that it 

will dissolve better, and that it will have a lower risk of off-target liabilities. This combined 

validation framework shows that compound 11325 is more than just a “virtual hit”; it is 

also a carefully chosen scaffold with clinical potential. It also offers a novel methodological 

framework for kinase inhibitor discovery by showing that real lead identification needs 

the combination of binding affinity, stability dynamics, thermodynamic landscapes, and 

ADMET rationality, rather than just single-parameter optimizations. Because of this, com-

pound 11325 is known to be a strong and stable PI3K binder, making it a promising can-

didate for therapy that needs more testing in animals before it can be used in humans. Its 
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hinge-centric selectivity and hydrophobic optimization give it a mechanistic edge in the 

search for new anticancer drugs that target PI3K. 
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