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Abstract 

Computational and machine learning approaches are playing a pivotal role in the identi-

fication, characterization, and targeting of noncanonical DNA structures, including G-

quadruplexes, Z-DNA, hairpins, and triplexes. These configurations play critical roles in 

maintaining genomic stability, facilitating DNA repair, and regulating chromatin organi-

zation. Although the human genome predominantly adopts the B DNA conformation, 

evidence indicates that non-B DNA forms exert significant influence on gene expression 

and disease development. This highlights the need for dedicated computational frame-

works to systematically investigate these alternative structures. Machine learning models 

encompassing supervised and unsupervised algorithms such as K Nearest Neighbours, 

Support Vector Machines, and deep learning architectures including Convolutional Neu-

ral Networks have shown considerable potential in predicting sequence motifs predis-

posed to forming non-B DNA conformations. These predictive tools contribute to identi-

fying genomic regions associated with disease susceptibility. Complementary bioinfor-

matics platforms and molecular docking tools, notably Auto Dock, along with chemical 

libraries like ZINC, facilitate the virtual screening of small molecules targeting specific 

DNA structures. Stabilizers of G quadruplexes, exemplified by CX 5461, have demon-

strated therapeutic promise in BRCA deficient cancers, highlighting the translational im-

pact of computational methods on drug discovery. Anticipating DNA structural shifts 

opens new avenues in personalized medicine for complex diseases, with computational 

chemistry and machine learning deepening our understanding of DNA topology and 

guiding smarter ligand design. The integrated approach proposed in this review ad-

dresses the previous studies done in this field and highlights the current limitations in 

structural genomics and advances the development of precision therapeutics aligned with 

individual genomic profiles.  
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1. Introduction 

The human genome primarily exists as right-handed B-DNA, featuring 10 base pairs 

per turn and distinct major and minor grooves that facilitate essential protein-DNA inter-

actions during transcription and replication. However, DNA polymorphism allows the 

formation of non-canonical structures such as triplex DNA, Z-DNA, hairpins, G-quadru-

plexes, and cruciform DNA. These structures, influenced by nucleotide sequence, ligand 

binding, hydration, and super helical stress, are involved in replication, recombination, 

transcription, DNA repair, nucleosome assembly, and genome organization [1]. 

Triplex DNA was first described in 1957 when a third strand was found to bind along 

the major groove of a DNA duplex via Hoogsteen hydrogen bonding. Triplexes can be 

intermolecular or intramolecular. In H-DNA, the purine strand of the duplex folds back 

to pair with the pyrimidine strand in a parallel or antiparallel alignment. G-quadruplexes 

are non-canonical structures formed by guanine-rich sequences stabilized through 

Hoogsteen bonding between stacked G-tetrads (Burge et al., 2006). They are commonly 

found at telomeres and transcription start sites, where they influence gene regulation. 

Their regulatory role is conserved across diverse organisms and is linked to cancer, dif-

ferentiation, and metabolism [2]. Z-DNA is a left-handed double helix that forms in alter-

nating purine-pyrimidine sequences, particularly GC-rich regions, under physiological 

stress or in the presence of specific ions or chemicals. Z-DNA is stabilized by proteins such 

as the Zα domain of ADAR1 and ZBP1, and destabilized by agents like Actinomycin D 

and Distamycin A. The BZ junction marks the transition between B- and Z-DNA and is 

formed in negatively supercoiled regions generated during transcription [3]. 

Hairpin DNA forms when a single strand folds into a stem-loop via complementary 

base pairing, typically at palindromic sequences. These structures can form during repli-

cation or repair processes, and longer palindromes are linked to genetic instability. In his-

tone mRNA, hairpins are essential for 3′ end processing, export, and translation, with key 

roles played by hairpin-binding protein and U7 snRNP [4]. 

Cruciform DNA arises from inverted repeat sequences and features stem-loop struc-

tures at a central branch point [5]. Found near promoters and replication origins, cruci-

forms facilitate chromatin remodelling, transcription, and genome stability by enabling 

DNA-protein interactions and bringing distant DNA elements into proximity. 

 

Figure 1. Non-Canonical DNA Structures. 
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2. Genome-Wide Databases and Computational Resources for DNA 

Structures 

G-quadruplexes (G4s) are non-canonical, four-stranded structures that form in gua-

nine-rich nucleic acids. The basic structural unit of a G4 is the G-tetrad—a planar arrange-

ment of four guanine bases stabilized by Hoogsteen hydrogen bonds. With the increasing 

identification of G4-forming RNAs, various tools have been developed to aid in the struc-

tural determination of G4 DNA and RNA. In the field of bioinformatics, several tools have 

been introduced to predict G4 structures across different nucleic acid types. These tools 

are capable of analyzing molecular dynamics, calculating free energy, and performing 

molecular docking simulations to evaluate the stability and functional relevance of G4 

structures [6]. Non-B DB is a comprehensive database containing predictions of 3,864,596 

non-B DNA structures, including G-quadruplex motifs, across 12 mammalian genomes, 

including the human genome. It offers advanced search capabilities, allowing users to fil-

ter by species, DNA structure class, chromosome, gene type, and chromosomal location. 

Additional filters include sequence composition, motif type, and nucleotide tracts, ena-

bling in-depth exploration of non-B DNA motifs. G4Hunter is a widely used predictive 

tool for identifying putative G-quadruplex sequences (PQS) in DNA or RNA, based on G-

richness and G-skewness, the fraction of guanines in a sequence, and the G/C ratio be-

tween DNA strands [5]. Users can customize the search window size and threshold val-

ues, assigning weighted scores to guanine residues (e.g., G = 1, GG = 2) to refine predic-

tions. 

Non-B DNA structures arise when DNA deviates from the classical Watson-Crick B-

form, often due to specific sequence motifs or environmental conditions. These alternative 

conformations can impair replication, increase error rates, and promote mutagenesis, 

leading to genome-wide variation in mutation rates. Motifs capable of forming non-B 

structures range from a few bases to several hundred nucleotides and are randomly dis-

tributed across the genome [7]. They are known to disrupt replication and transcription, 

contributing to genomic instability, particularly in cancer. In silico tools such as G4Hunter, 

R-loop tracker, and other structure-predicting algorithms can identify overlaps between 

G-quadruplexes, R-loops, and other non-B structures. These tools use algorithms that se-

lect common overlapping regions to optimize memory and computational efficiency [8]. 

Mapping G4-forming regions genome-wide allows researchers to identify G-quadru-

plexes in key regulatory areas such as promoters, telomeres, and untranslated regions 

(UTRs)—sites often linked to gene regulation. Furthermore, small molecules that stabilize 

or destabilize G4 structures are being explored as therapeutic agents, particularly in on-

cogenes like MYC or in telomeric regions. G4Hunter is instrumental in pinpointing prom-

ising G4 targets for drug development. 

Table 1. Key databases with the type of structures, data sources, and key features. 

Database 
Type of Structures 

Cataloged 
Data Sources 

Experimental Vali-

dation 
Key Features References 

G4Hunter G-quadruplex (G4) Genomic sequences 

In-silico (scoring 

based on guanine 

content and se-

quence) 

Predict potential 

G4-forming se-

quences, 

[5,9] 

Non-B DNA 

Various non-B 

DNA structures (Z-

DNA, G4, triplexes, 

cruciform, etc.) 

Genomic sequences 

(e.g., human, 

mouse, bacterial) 

Experimental data 

integrated along-

side in silico pre-

dictions 

collection of non-B 

DNA motifs, links 

to disease associa-

tions 

[10] 
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QuadBase2 G-quadruplex (G4) 

Human genome, 

model organisms 

(plants, yeast, etc.) 

Experimental data 

from literature and 

high-throughput 

sequencing 

Contains experi-

mentally validated 

G-quadruplex 

[11] 

Triplex- 

Inspector 

Triplex-forming ol-

igonucleotides 

(TFOs) and triplex 

DNA 

Genomic sequences 

(custom uploads, 

model organisms) 

Based on sequence 

features, in silico 

predictions 

Detect triplex 

DNA, gene regula-

tion 

[11] 

3. Machine Learning and Bioinformatics Approaches for Predicting 

Non-B DNA Structures 

Machine Learning for Detecting Gene-Gene Interactions: Machine learning (ML) is a 

subfield of computer science and artificial intelligence that focuses on developing 

algorithms capable of learning from data and making predictions. In genetics, ML can be 

used to predict phenotypes (such as traits or disease risks) from biomarkers like DNA 

sequences, making it a supervised learning problem where the genotype is the input and 

the phenotype is the output [12]. Machine learning is broadly categorized into three types 

that is supervised learning to learn from labeled training data to predict outcomes on new, 

unseen data. It maps input features to known outputs, enabling the model to make 

accurate predictions, and unsupervised learning that works with unlabeled data to 

identify patterns or groupings without predefined outcomes. It is used in clustering and 

dimensionality reduction and reinforcement learning, which involves learning through 

interaction with an environment, where the algorithm improves its decisions over time 

based on feedback or rewards [13]. 

3.1. Common Machine Learning Algorithms in Genomics 

3.1.1. K-Nearest Neighbors (KNN) 

KNN is a supervised learning algorithm used for classification and regression. It 

classifies a data point based on the majority class among its K nearest neighbors in the 

feature space. The distance metric and the value of K are critical to performance. KNN is 

simple and effective for datasets where similar instances belong to the same class [13]. 

3.1.2. Artificial Neural Networks (ANNs) 

ANNs are inspired by the biological brain and consist of layers of interconnected 

neurons. They are effective for pattern recognition and classification tasks. Multi-layer 

perceptrons (MLPs), functional link ANNs, and two-class SVMs have been used to 

identify novel disease genes using topological features from protein–protein interaction 

(PPI) networks. ANNs have also been applied to gene expression datasets to distinguish 

between disease states [14]. 

3.1.3. Convolutional Neural Networks (CNNs) 

CNNs are a type of deep learning architecture primarily used in image classification, 

including clinical and biological imaging. CNNs capture spatial relationships between 

features and are robust to transformations such as scaling and translation. They are 

increasingly used for biomarker discovery and disease prediction [15]. 

3.1.4. Random Forest (RF) 

Random Forest is a supervised ensemble learning method based on decision trees. It 

uses the bagging technique to train multiple decision trees and aggregates their results for 

improved prediction accuracy. Random Forests are known for their robustness and ability 
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to handle high-dimensional genomic data. In one study, it achieved 94.74% accuracy in a 

binary classification task. 

3.1.5. Support Vector Machines (SVMs) 

SVMs are kernel-based classifiers that find the optimal hyperplane separating data 

into distinct groups. They are widely used in bioinformatics due to their high accuracy 

and ability to model complex, high-dimensional data. SVMs are particularly effective in 

identifying subtle differences between biological classes. 

Machine learning techniques, when applied to gene-gene interaction studies, can 

uncover complex relationships within genomic data. By learning from large-scale, high-

throughput datasets, these models facilitate the discovery of novel biomarkers, disease-

associated genes, and predictive genomic signatures, making them essential tools in 

personalized medicine and genomic research. 

The machine learning models leverage sequence-intrinsic features such as G-tract 

length, loop composition, and flanking nucleotide context that correlate with the 

propensity for adopting specific topologies rather than assuming a single static fold. This 

design enables the model to capture the conformational diversity inherent to polymorphic 

non-canonical DNA structures. Recent studies have shown that sequence-derived 

information alone can predict G-quadruplex (G4) topology with high accuracy. Ref. [16] 

provided evidence that G4ShapePredictor can predict parallel, antiparallel, and hybrid G4 

structures using 482 distinct sequence–topology pairs that were validated in the lab. The 

results provide confidence that patterns encoded into the sequence can predict the 

dominant conformations that will be adopted in a biological setting, reinforcing the 

reliability of computational models for even DNA architectures that are dynamically 

equilibrating or equilibrium conformations. 

Table 2. Machine Learning Techniques and Models for Detecting Gene Abnormalities. 

Technique Model Used Purpose Accuracy Reference 

Prediction of G-

quadruplexes 

Convolutional Neural 

Network (CNN) 

Predict G-quadruplex-

forming regions in 

DNA sequences 

95.2% (AUC-ROC) [17] 

G4Boost: quadruplex 

identification and 

stability prediction 

XGBoost regression 

model 

Determine the 

sequences, nucleotide 

compositions, and 

estimated structural 

topologies of G4 motifs 

to forecast their 

secondary structure 

93% [18] 

Using omics data, a 

method for predicting 

functional Z-DNA 

areas 

convolution neural net-

works (CNN), 

 

Recurrent neural net-

works (RNN), 

 

Hybrid CNN-RNN 

models 

DeepZ—Developed 

using chromosome 

accessibility, 

transcription 

factor/RNA 

polymerase binding, 

and epigenetic marker 

maps 

86.6% [19] 

Identifying proteins 

that bind to DNA 

using features based on 

composition and 

Random Forest, 

 

Support Vector 

Machine 

 

“DNAPred_Prot” 

DNA-binding protein 

using sequence 

features. 

91.47% [20] 
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position is the focus of 

DNAPred_Prot. 

Artificial Neural 

Network 

IoMT-based prediction 

of mitochondrial and 

inherited illnesses 

support vector 

machine (SVM) 

 

K-Nearest Neighbor 

(KNN) 

Analysis of genetic 

data for early and 

accurate diagnosis. 

94.99% [21] 

4. Applications of DNA Structure Prediction in Medicine and Disease 

Prediction of DNA structure has become pivotal to contemporary biology and 

medicine, enhancing disease mechanism insights and enabling the formulation of 

targeted treatments. Methods like AlphaFold have revolutionized structural biology by 

allowing massive protein and DNA structure predictions [16]. In cancer, mutations in 

genes and chromosomes affect normal protein behavior, and structure prediction assists 

in the identification of oncogenes, inhibitor design, and the targeting of immunotherapies. 

Correspondingly, in neurodegenerative diseases, structural defects like repeat expansions 

in Huntington’s disease or methylation pattern changes in Alzheimer’s disease emphasize 

the need for predictive models in revealing disease mechanisms and therapeutic targets 

[23,24]. In addition to disease-specific applications, DNA structure prediction supports 

personalized medicine, where mutation profiling and pharmacogenomics facilitate 

precision oncology and drug response prediction in individual patients [25]. Collectively, 

these uses prove its power to transform diagnostics, drug discovery, and precision 

healthcare. 

5. Conclusions and Future Directions 

Research on non-canonical DNA structures such as G-quadruplexes, Z-DNA, 

hairpins, and triplexes has transformed our understanding of genome regulation, 

especially their roles in DNA repair, genetic stability, and transcriptional control. The use 

of computational methods and machine learning has become key in identifying these 

structures, studying their ligand interactions, and revealing their functional importance. 

Combining specialized databases with advanced machine learning models improves the 

classification and interpretation of genomic data, leading to more accurate predictions of 

non-B DNA motifs. 

Future efforts should focus on refining computational methods to better capture the 

dynamics and biological roles of these structures. Expanding algorithmic capabilities and 

incorporating more diverse, high-quality datasets will further enhance model 

performance and predictive power. These advances may pave the way for novel 

therapeutic strategies, particularly in cancer and neurodegenerative diseases. The 

integration of AI, big data analytics, and bioinformatics tools in DNA structural research 

holds great promise for personalized medicine. Tailoring treatments based on an 

individual’s unique genomic architecture can revolutionize disease diagnosis and 

management. Ultimately, continued exploration of the relationship between DNA 

structure and function will be essential for unlocking new therapeutic avenues and 

improving patient outcomes in precision medicine. 
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