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Abstract 

Developing predictive models for drug efficacy is challenged by the complexity and het-

erogeneity of bioassay data. Here, we present LIFE.PTML, a methodology integrating 

drug Lifecycle (L), Information Fusion (IF), Encoding (E), Perturbation Theory (PT), and 

Machine Learning (ML), to predict compound activity across diverse experimental condi-

tions. Using a dataset of 3748 molecule-assay combinations targeting calmodulin (CaM) 

and related proteins, LIFE.PTML combines chemical and protein descriptors, quantifies 

experimental variability via perturbation operators, and trains non-linear classifiers, in-

cluding XGBoost and Gradient Boosting. XGBoost achieved the best performance, with 

88.9% test accuracy and ROC AUC of 0.959, while feature importance analysis highlighted 

contributions from both drug- and protein-level descriptors. The results demonstrate that 

LIFE.PTML provides a robust, flexible, and interpretable framework for predictive 

chemoinformatics, facilitating the integration of multi-source data for drug discovery ap-

plications. 
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1. Introduction 

While developing new drug formulations holds promise for improved treatments, 

the process is long and expensive [1]. For this reason, improving efficiency and accuracy 

in predicting the efficacy of potential new drugs could save both time and resources, ulti-

mately accelerating the development of effective therapies [2]. Computational tools, in-

cluding chemoinformatics models, have transformed drug discovery, enabling more sys-

tematic exploration of chemical space and prediction of bioactivity [3,4]. However, many 

traditional chemoinformatic approaches struggle to handle the complexity, heterogeneity, 

and volume of modern biomedical data, limiting their predictive power. 

To overcome these limitations, advanced machine learning (ML) techniques have 

been increasingly employed to extract patterns from large and diverse datasets. Our 

group has developed the LIFE.PTML methodology, which integrates Life cycle (L) of 
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drugs, Information Fusion (IF), Encoding processes (E), Perturbation Theory (PT) and 

AI/ML techniques. LIFE.PTML allows the combination of multiple data sources—includ-

ing chemical descriptors, protein features, and assay conditions—while PT operators 

quantify experimental variability and perturbations, providing normalized inputs for ML 

models. Previous applications of LIFE.PTML have shown its effectiveness in predicting 

drug–target interactions and other medicinal chemistry problems [5–7]. 

These computational approaches are particularly valuable for studying protein tar-

gets with critical biological functions [8]. For example, calmodulin (CaM), a key mediator 

of calcium signaling, is of great interest due to its structural complexity, central role in 

cellular function [9], and involvement in various diseases [10–12]. By leveraging 

LIFE.PTML models, it is possible to predict compound activity across diverse assay con-

ditions, including variations in target proteins, experimental concentrations, and assay 

types. In this context, LIFE.PTML provides a framework for predicting the likelihood that 

a compound will be active under specific conditions (i.e., f(vij) = 1), integrating information 

from both the chemical and protein sides of the system. 

The main objective of this work is to develop and validate LIFE.PTML-based 

chemoinformatic models capable of predicting assay efficacy with high accuracy. These 

models are trained using both linear and non-linear ML algorithms, including Random 

Forest, SVM, Decision Tree, K-Nearest Neighbors, Gradient Boosting, and XGBoost. By 

combining multi-source data, perturbation quantification, and advanced non-linear mod-

eling, the LIFE.PTML approach aims to improve predictive accuracy, generalizability, and 

interpretability of chemoinformatic models in complex biological systems. 

2. Materials and Methods 

LIFE.PTML analysis involved four phases: the IF process, E part, PT variability quan-

tification, and AI/ML algorithm training, validation, and use. In the initial IF phase, data 

gathering, data curation and data pre-processing tasks were carried out. In fact, system 

conceptualization is conceptual decomposition of the system in different sub-systems that 

are easy to study. In this case, the system was theoretically divided into two subsystems: 

drug information related to assays and protein data related to assays. Taking this into 

account, databases were examined and processed. Continuing the LIFE.PTML process, in 

the PT phase, the reference function and perturbation theory operators (PTO) or moving 

averages (MA) were calculated, which are used to quantify all the perturbations/variabil-

ity on the input variables for all subsystems of the query system with respect to conditions 

or labels for the systems of reference. Lastly, the ML-Phase involved the training and val-

idation of different ML models [6–8,13,14]. The general procedure followed in this part 

can be seen schematically in the Figure 1. 

 

Figure 1. Workflow of the LIFE.PTML model development. 
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2.1. Information Fusion 

In the first stage, the Information Fusion (IF) phase, the dataset was constructed using 

the ChEMBL database by retrieving assays involving proteins associated with calmodulin 

(CaM) within the Ca2+ signaling pathway, as defined in KEGG [15–17]. This procedure 

provided approximately 4000 assays, including responses of CaM- and riluzole-related 

compounds, where the activity values varied according to the compound tested and the 

experimental conditions. To complement this information, protein data were collected 

from NCBI resources [18,19], using GenBank and Protein BLAST to obtain the FASTA 

sequences and the three biologically active domains of each protein. Once gathered, de-

scriptors were calculated and classified into drug-related and protein-related categories. 

Drug descriptors included molecular weight, Lipinski’s Rule of Five, LogP [20–22], inter-

atomic electronegativity, van der Waals surface area, and assay-specific variables such as 

inhibitor and substrate concentrations [23]. Protein descriptors were obtained through the 

MARCH-INSIDE 2.0® program, which encodes physicochemical properties such as elec-

tronegativity, polarity, and acidity along the amino acid sequence, propagating them 

through the residue network of each domain to generate quantitative values used as 

model inputs. 

In the end, the dataset included ChEMBL compounds, biological activity data, and 

various assay types. Specifically, ChEMBL compounds included approximately 1000 

chemical entities, many of which are FDA-approved drugs such as Gefitinib and Tamox-

ifen, along with investigational compounds. Biological activities were tested across 13 dif-

ferent measures, including parameters like IC50 (nM), Ki (nM), inhibition percentages, and 

potency (nM). The assays covered various target proteins, with key examples including 

Calmodulin (CaM), Myosin light chain kinase, and Epidermal growth factor receptor 

(EGFR). Furthermore, different assay cell types were used, such as HEK293 (human em-

bryonic kidney cells), CHO (Chinese hamster ovary cells), and RAW264.7 (mouse macro-

phage cell line). The assays also spanned diverse tissues and organisms, including human 

(Homo sapiens), mouse (Mus musculus), and the pathogen Plasmodium falciparum (causing 

malaria). The total number of data points and different assays included in the final dataset 

amounts to 3748. 

2.2. Perturbation Theory Operator’s Calculation 

In the second stage, the Perturbation Theory (PT) phase, Perturbation Theory Oper-

ators (PTOs) were calculated using Box–Jenkins moving average (MA) method [24]. The 

model considered two types of boundary conditions: those related to the assays them-

selves, such as target or assay type (cassay = (c1, c2, c3, c4, c5)), and those related to the dataset, 

including factors like organism or buffer (cdat = (c6, c7, c8, c9, c10)). For each condition, the 

mean descriptor values were calculated (MA), and deviations from these averages were 

expressed as delta values (ΔDk(cj); Equation 1). In this way, the perturbation operators 

quantified the extent to which experimental variability influenced descriptor behavior. 

𝛥𝐷𝑘(𝒄𝒋) = 𝐷𝑘− < 𝐷𝑘(𝒄𝒋) > (1) 

2.3. Objective and Reference Function Calculation 

The third stage focused on the definition of the output variable and the reference 

function. Since assays reported different measures of activity, such as IC50, Ki, or inhibition 

percentages, a desirability function was introduced to standardize the classification. Var-

iables expected to increase, such as inhibition or residual activity, were assigned a desira-

bility of +1, while those expected to decrease, including IC50 or Ki, were assigned a value 

of –1. Cut-off criteria were then applied to distinguish active from inactive compounds, 

using 100 nM for concentration-based assays, 70% for inhibition percentages, and the 
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dataset mean when no conventional threshold was available. These cut-offs allowed the 

transformation of activity data into Boolean variables (objective function), identifying 

compounds as active (f(vij)obj = 1) or inactive (f(vij)obj = 0). At the same time, a reference func-

tion (f(vij)ref; Equation (2)) was calculated to estimate the probability of a compound being 

active under specific boundary conditions, providing a baseline measure for subsequent 

predictions. 

𝑓(𝑣𝑖𝑗)𝑟𝑒𝑓 = 𝑝(𝑓(𝑣𝑖𝑗/𝒄𝑗)𝑜𝑏𝑗 = 1))𝑟𝑒𝑓 =
𝑛(𝑓(𝑣𝑖𝑗/𝒄𝑗)𝑜𝑏𝑠 = 1)

𝑛(𝑓(𝑣𝑖𝑗/𝒄𝑗)𝑜𝑏𝑠)
                (2) 

2.4. Machine Learning Model Development 

Finally, in the Machine Learning (ML) phase, several non-linear models were imple-

mented to predict whether a compound will be successful or not under some boundary 

conditions (i.e., objective function). Non-linear algorithms included Random Forest, Sup-

port Vector Machine with RBF kernel, Decision Tree, K-Nearest Neighbors, Gradient 

Boosting, and XGBoost. All models were developed in Python using scikit-learn and pan-

das libraries [25]. The dataset was divided into 80% for training and 20% for testing, with 

a performance threshold of 70% accuracy and sensitivity as the minimum requirement 

[26]. Hyperparameters were optimized through Grid Search and cross-validation, and 

model performance was evaluated using accuracy, sensitivity, specificity, AUC-ROC, and 

confusion matrices. 

3. Results and Discussion 

3.1. Dataset Construction 

The information fusion stage resulted in a final dataset of 3748 molecule–assay com-

binations, corresponding to 1052 unique compounds. The distribution of the target varia-

ble was well-balanced, with 51.2% active cases and 48.8% inactive cases, providing favor-

able conditions for supervised learning without the need for additional resampling tech-

niques. In terms of biological diversity, the dataset included 101 protein targets associated 

with Ca2+-dependent signaling pathways, such as calmodulin, myosin light chain kinase, 

and epidermal growth factor receptor (EGFR). This diversity confers both biological rele-

vance and complexity to the dataset. Additionally, the presence of 19 species, 11 cell types, 

and multiple assay conditions captured a wide spectrum of experimental variability, en-

hancing the representativeness of the model. The definition of the objective function and 

reference function enabled the integration of heterogeneous bioactivity measures (IC50, Kᵢ, 

inhibition %) into a binary classification scheme. A threshold of 100 nM for IC50/Ki and 

70% for inhibition assays was applied, resulting in a clear separation between active and 

inactive cases. 

3.2. LIFE.PTML Non-Linear Models 

Several non-linear machine learning models were trained to predict compound ac-

tivity under specific assay conditions. These included ensemble methods (XGBoost, Gra-

dient Boosting, Random Forest), support vector machines (SVM with RBF kernel), deci-

sion trees, and k-nearest neighbors (KNN). Each model was optimized via Grid Search or 

Randomized Search and evaluated using an 80/20 training/test split. ROC curves were 

calculated for both training and test sets to assess discriminative performance across mod-

els (Figure 2). 
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Figure 2. ROC Curves for nonlinear models developed. ROC curves for training and test sets for 

XGBoost and Gradient Boosting classifiers, illustrating discriminative performance of LIFE.PTML 

models. 

A detailed comparison of the optimized hyperparameters and performance statistics 

for all non-linear models is presented in Table 1. The comparison of non-linear classifiers 

highlighted substantial differences in predictive behavior. Ensemble methods, particu-

larly XGBoost and Gradient Boosting, consistently outperformed other approaches across 

all evaluation metrics. XGBoost achieved the most balanced performance, with a test ac-

curacy of 88.9% and ROC AUC of 0.959, indicating excellent discriminative power. Train-

ing metrics were markedly higher (accuracy 97.3%, AUC 0.999), suggesting a degree of 

overfitting; however, the test set performance confirmed good generalization capacity. 

Gradient Boosting displayed very similar performance (test accuracy 89.5%, ROC AUC 

0.958), with slightly better calibration between sensitivity and specificity. In contrast, mod-

els such as Random Forest also reached strong AUC values (0.947), but with greater vari-

ability in sensitivity and precision. KNN severely overfit the training data (accuracy 

99.6%) and underperformed in the test set (accuracy 83.3%), underscoring its limited ap-

plicability in high-dimensional descriptor spaces. SVM also lagged behind, with reduced 

ROC AUC (0.864), consistent with the challenges of capturing nonlinear relationships 

without extensive kernel optimization (Table 1). 

Table 1. Summary of hyperparameters and performance metrics for LIFE.PTML non-linear models. 

Model 
Best Hyperparameters  

(Randomized/ Grid Search) 

Train  

Accuracy 

Test  

Accuracy 
Precision Recall F1-Score 

ROC 

AUC 

Random For-

est 

n_estimators = 610; max_depth = 26; cri-

terion = entropy; max_features = sqrt; 

min_samples_split = 7; min_sam-

ples_leaf = 2 

0.947 0.877 0.872 0.890 0.881 0.947 

SVM (RBF) 
C = 10; gamma = scale; kernel = rbf; de-

gree = 3; probability = True 
0.827 0.788 0.751 0.875 0.808 0.864 

Decision Tree 

criterion = entropy; max_depth = 32; 

min_samples_split = 7; min_sam-

ples_leaf = 5; max_features = sqrt 

0.930 0.837 0.844 0.836 0.840 0.891 

KNN 
n_neighbors = 15; weights = distance; p 

= 2 (Euclidean) 
0.996 0.833 0.827 0.851 0.839 0.912 

Gradient 

Boosting 

n_estimators = 310; learning_rate = 0.14; 

max_depth = 5; subsample = 0.75; 

max_features = sqrt 

0.995 0.895 0.892 0.903 0.898 0.958 
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XGBoost 

n_estimators = 160; learning_rate = 0.27; 

max_depth = 12; subsample = 1.0; 

colsample_bytree = 0.55; gamma = 1.7; 

reg_alpha = 0.3; reg_lambda = 1.5 

0.973 0.889 0.891 0.893 0.892 0.959 

Confusion matrices for XGBoost and Gradient Boosting (Figure 3) show high classi-

fication accuracy. XGBoost correctly classified 97.5% of training samples and 89.4% of test 

samples, while Gradient Boosting achieved 99.0% on training and 90.1% on test sets. Mis-

classifications remained low in both models, confirming robust generalization and reliable 

prediction of compound activity across assay conditions. 

 

Figure 3. Confusion Matrices for Boosting-Based IFPTML Models. 

The feature importance profile obtained from the XGBoost model (Figure 4) high-

lights the integration of both drug- and protein-derived descriptors within the LIFE.PTML 

framework. The most influential feature was the reference function f(vij)ref, which repre-

sents the baseline activity probability under specific boundary conditions. This indicates 

that the perturbation-based normalization step provides a strong prior for classification. 

Among the experimental conditions, the inhibitor (ΔV(drug, assay)2) and substrate concen-

trations (ΔV(drug, assay)1) emerged as key contributors, underscoring the role of assay 

setup in determining compound performance. Several drug-level perturbation operators 

linked to global physicochemical properties, particularly electronegativity (ΔD(drug, dat)1–

2, ΔD(drug, dat)013, ΔD(drug, dat)053–054, ΔD(drug, dat)101) and van der Waals terms (ΔV(drug, 

dat)1), also ranked highly. This aligns with the chemical intuition that electronic distribu-

tion and steric interactions strongly influence ligand–protein binding within Ca2+-depend-

ent pathways. Importantly, protein-derived features were also represented, notably the 

second-domain electronegativity (ΔD(prot, domII, dat)1), reflecting the contribution of pro-

tein structural context to predictive power. Taken together, the feature ranking demon-

strates that the LIFE.PTML methodology effectively captures multi-source information, 
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balancing chemical, biological, and experimental descriptors to provide mechanistically 

plausible predictions. 

 

Figure 4. Top 15 Feature Importances from XGBoost Model. 

Taken together, these findings confirm that boosting-based classifiers, particularly 

XGBoost, represent the most reliable LIFE.PTML models in this study. While some over-

fitting is present, the balance between sensitivity, specificity, and ROC AUC supports their 

suitability for predictive applications in complex biological systems. 

4. Conclusions 

In this study, we have developed and systematically applied the LIFE.PTML meth-

odology, a combined framework of drug Lifecycle (L), Information Fusion (IF), Perturba-

tion Theory (PT), and Machine Learning (ML), to handle complex, heterogeneous datasets 

arising from bioassays involving calmodulin (CaM) and related protein targets. The meth-

odology provides a structured and reproducible pipeline for integrating chemical and 

protein descriptors, quantifying experimental variability, and predicting assay outcomes 

under diverse experimental conditions. 

By combining these elements, the LIFE.PTML approach supports the development 

of non-linear predictive models capable of integrating multidimensional data while con-

trolling for experimental variability. The framework has been designed to be flexible and 

generalizable, allowing the inclusion of diverse assay types, experimental conditions, and 

descriptor classes. Overall, the LIFE.PTML methodology represents a comprehensive and 

modular approach to predictive modeling in cheminformatics. It establishes a robust 

workflow that can be applied to future drug discovery efforts, offering a structured means 

to incorporate chemical, biological, and experimental variability into predictive ML 

frameworks. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CaM Calmodulin 

E Encoding processes 

EGFR Epidermal Growth Factor Receptor 

f(vij)obj Objective function: binary label indicating compound activity under specific assay 

conditions (1 = active, 0 = inactive) 

f(vij)ref Reference function: probability of compound being active under specific bounary 

conditions (baseline for predictions) 

IC50 Half maximal inhibitory concentration 

Ki Inhibition constant 

KNN K-Nearest Neighbors 

LIFEPTML Life cycle (L) + Information Fusion (IF) + Encoding processes (E) + Perturbation 

Theory (PT) + Machine Learning (ML) 

IF Information Fusion 

ML Machine Learning 

MA Moving Average 

PT Perturbation Theory 

PTO Perturbation Theory Operator 

ROC AUC Area under the Receiver Operating Characteristic curve 

SVM Support Vector Machine 
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