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Abstract 

3-Acetylamino-6-aryl-5,6-dihydrouracils were found to exist in DMSO-d6 solution as mix-

tures of four rotamers due to hindered rotation around the adjacent N-N (2 major rota-

mers, 96%) and C-N (2 minor rotamers, 4%) bonds. To explain these NMR spectroscopic 

data, thermodynamic and kinetic parameters for interconversion of all the rotamers of 3-

acetylamino-5,6-dihydrouracil as a model compound were determined using the DFT 

B3LYP/6-311++G(d,p) method in the gas phase and DMSO solution. 

Keywords: 3-acetylamino-5,6-dihydrouracils; hindered rotations; conformational analy-
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1. Introduction 

3-Aminohexahydropyrimidine-2,4-diones (3-amino-5,6-dihydrouracils) are repre-

sentatives of an interesting type of uracil derivatives. For example, they show various bi-

ological activities such as anti-epileptogenic [1] and herbicidal properties [2], HLGPa and 

TNF-α inhibitory activities [3,4]. However, in contrast to 3-aminohydantoins [5–7], 3-

amino-5,6-dihydrouracils remain underexplored to date [8–12]. 

Recently, we developed a novel approach to derivatives of 6-substituted 3-amino-

5,6-dihydrouracils involving the acid-catalyzed cyclization of hydrazides of β-(4-semi-

carbazido)carboxylic acids 1 [13]. In particular, refluxing hydrazides 1a,b in AcOH for 9 

h resulted in 3-acetylamino-5,6-dihydrouracils 2a,b in yields of 84–87% (Scheme 1). 

 

Scheme 1. Preparation of 3-acetylamino-5,6-dihydrouracils 2a,b. 
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It is noteworthy that the 1H and 13C NMR spectra of compounds 2a,b in DMSO-d6 

showed the presence of four sets of signals of similar protons and carbons with a huge 

predominance of two ones (96 mol%). This was explained by the existence of uracils 2a,b 

as mixtures of 4 rotamers due to restricted rotation around the adjacent N-N and C-N 

bonds. Ratios of the rotamers for the crude compounds 2a,b in DMSO-d6 solution at 303K 

were 50:46:2.1:1.9 and 51:45:2.1:1.9, respectively (1H NMR data). It should be noted that 

recrystallization of these compounds did not change the rotamer ratios. 

Although restricted rotation around the amide C-N bond due to its partial double-

bond character that arises from resonance between the nitrogen lone pair and the carbonyl 

group is well known [14], hindered rotation around the N-N bond giving atropoisomers 

is not trivial phenomenon [15,16]. To study this type of atropoisomerism in 3-acetylamino-

5,6-dihydrouracils, the DFT B3LYP/6-311++G(d,p) calculations were performed. Herein, 

we report on the results obtained. 

2. Results and Discussion 

First of all, the thermodynamic characteristics of interconversion of all the rotamers 

of 6-unsubstituted dihydrouracil 3 (Figure 1) as a model compound were calculated by 

the DFT B3LYP/6-311++G(d,p) method in the gas phase and DMSO solution using the po-

larizable continuum model (PCM). 

 

Figure 1. Structure 3-acetylamino-5,6-dihydrouracil 3 and its s-cis and s-trans conformers relative to 

the amide C-N bond. 

The computations showed that the s-cis isomers relative to the amide C-N bond are 

significantly more stable than the corresponding s-trans isomers both in the gas phase and 

in DMSO solution (Scheme 2, Table 1). 

Table 1. Changes in the electron energy (ΔE, kcal/mol) and the Gibbs free energy (ΔG, kcal/mol) 

during rotation around the N-N and C-N bonds in 3-acetylamino-5,6-dihydrouracil (3) in the gas 

phase and in DMSO solution.a. 

Rotamer or Transtion 

State 

The Gas Phase DMSO Solution 

ΔE ΔG b ΔE ΔG b 

(Sa)-3 (s-cis) 0.00 0.00 0.00 0.01 

(Ra)-3 (s-cis) 0.72 0.76 0.08 0.00 

(Sa)-3 (s-trans) 2.47 2.53 1.61 1.66 

(Ra)-3 (s-trans) 2.43 2.58 1.77 1.99 

TS1 17.45 18.73 17.18 18.14 

TS2 18.19 19.51 17.90 18.96 

TS3 17.45 18.73 18.98 20.20 

TS4 15.73 17.56 18.10 19.32 

TS5 16.53 18.50 18.66 19.95 

TS6 16.81 18.70 19.14 20.38 

a According to the DFT B3LYP/6-311++G(d,p) calculations using the polarizable continuum model. 

b 298 K and 1 atm. 
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Scheme 2. Conformational changes in 3-acetylamino-5,6-dihydrouracil (3) during rotation around 

the N-N and C-N bonds. 

Clockwise or counterclockwise rotation around the N-N bond in the s-cis-isomer of 

uracil 3 gave two energetic minima [(Sa)- and (Ra)-enantiomers] and two transition states 

(TS1 and TS2). The both atropoisomers are very similar in stability, particularly in DMSO 

(Table 1). Computations revealed that the planes formed by the C(2)-N(3)-C(4) fragment 

and the acetylamino group are almost orthogonal. For example, in DMSO, the C(2)-N(3)-

NH-C(O) dihedral angle is 88.3° for (Sa)-enantiomer and 90.0° for (Ra)-enantiomer. The 

interconversion between these enantiomers occur through rather high energy barriers 

(ΔG# = 17.97–19.51 kcal/mol in the gas phase and ΔG# = 18.14–18.97 kcal/mol in DMSO; 298 

K, 1 atm). Analogously, two energetic minima and two transition states (TS5 and TS6) 

were found during rotation around the N-N bond in the s-trans-isomer of uracil 3 (Scheme 

2) with the energy barriers ΔG# in the ranges of 15.92–16.17 and 18.02–18.72 kcal/mol for 

the gas phase and DMSO solution, respectively (298 K, 1 atm). 

Rotation around the amide C-N bond was studied using the s-cis-(Sa)-rotamer of 3 as 

an example. This rotation in clockwise and counterclockwise directions resulted in the s-

trans-(Sa)-rotamer of 3 and proceeded through the transition states TS3 and TS4 with ΔG# 

= 15.02–18.73 kcal/mol (the gas phase) and ΔG# = 17.70–20.20 kcal/mol (DMSO solution) 

(298 K, 1 atm). 

It should be noted that intrinsic reaction coordinate (IRC) analysis demonstrated that 

all the found transition states (TS1-6) connect the desired minima. Figure 2 shows changes 

in the Gibbs free energy during rotation around the N-N and C-N bonds in dihydrouracil 

3 in DMSO solution. 

Thus, the computational data show that the hindered rotations around the N-N and 

C-N bonds of 3-acetylamino-5,6-dihydrouracil (3) could result in racemic mixtures of at-

ropoenantiomers possessing s-trans- or s-cis-configuration with predominance of the lat-

ter. Taking into account these data, next we performed the DFT B3LYP/6-311++G(d,p) 

computations for 3-acetylamino-6-(4-methylphenyl)-5,6-dihydrouracil (2b) (DMSO solu-

tion) using the polarizable continuum model (PCM). The hexahydropyrimidine ring of 

this compound can adopt two stable conformations with a pseudo-equatorial and a 

pseudo-axial orientation of the 4-methylphenyl group. The calculations revealed that in 

the case of s-cis isomers relative to the amide C-N bond, conformers with the pseudo-

equatorial aryl group were more stable in DMSO (ΔG = 1.54–1.56 kcal/mol). 
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Figure 2. Changes in the Gibbs free energy during rotation around the N-N and C-N bonds in di-

hydrouracil 3 in DMSO solution. 

In general, the DFT computations for dihydrouracil 2b possessing pseudo-equatorial 

orientation of the aryl group gave results similar to those for compound 3. Indeed, the 

rotations around the N-N and C-N bonds in uracil (6R)-2b with the pseudo-equatorial 

aryl group result in 4 rotamers. The 2 rotamers with s-cis conformation of the C-N bond 

are more stable than the 2 rotamers with s-trans conformation (Table 2). 

Table 2. Changes in the electron energy (ΔE, kcal/mol) and the Gibbs free energy (ΔG, kcal/mol) 

during rotation around the N-N and C-N bonds in uracil (6R)-2b in DMSO solution.a. 

Rotamer Structure ΔE ΔG b 

(6R,Sa)-2b (s-cis) 

 

0.00 0.53 

(6R,Ra)-2b (s-cis) 

 

0.06 0.00 

(6R,Sa)-2b (s-trans) 

 

1.71 1.49 

(6R,Ra)-2b (s-trans) 

 

1.82 2.03 

a According to the DFT B3LYP/6-311++G(d,p) calculations using the polarizable continuum model. 

b 298 K and 1 atm. 

Clockwise or counterclockwise rotation around the N-N bond in the s-cis conformer 

of uracil (6R)-2b gives two energetic minima [(6R*,Sa*)- and (6R*,Ra*)-diastereomers] and 

two transition states (TS1 and TS2) (Table 3). IRC analysis showed that the transition 
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states connect the desired minima. Computations demonstrated that the (6R*,Ra*)-dia-

stereomer is a little more stable (ΔG = 0.53 kcal/mol) than the (6R*,Sa*)-diastereomer. The 

energy barriers (ΔG#) between the isomers are in the interval of 17.65–19.17 kcal/mol. It is 

noteworthy that these values are in excellent agreement with the value of restricted rota-

tion barrier around the N-N bond for this compound estimated using 1H NMR spectro-

scopic data at different temperatures (ΔG≠ = 19.6 kcal/mol; DMSO-d6) [13]. 

Table 3. Changes in the electron energy (ΔE, kcal/mol) and the Gibbs free energy (ΔG, kcal/mol) 

during rotation around the N-N bond in dihydrouracil (6R)-2b (s-cis conformer) in DMSO solution.a. 

Rotamer or Transi-

tion State 
Structure ΔE ΔG b 

(6R,Sa)-2b (s-cis) 

 

0.00 0.53 

(6R,Ra)-2b (s-cis) 

 

0.06 0.00 

TS1 

 

17.10 18.18 

TS2 

 

17.89 19.17 

a According to the DFT B3LYP/6-311++G(d,p) computations (PCM). b 298 K and 1 atm. 

The values of the calculated hindered rotation barriers indicate that the all rotamers 

of uracil 2b are in equilibrium in DMSO at room temperature, but their interconversion is 

rather slow on the NMR time scale and they can be observed separately by NMR spec-

troscopy. In this case, one would expect that the rotamer ratio should follow to the calcu-

lated stability order: (6R,Ra)-2b (s-cis) > (6R,Sa)-2b (s-cis) >> (6R,Ra)-2b (s-trans) > (6R,Sa)-2b 

(s-trans) (Table 2). Indeed, this is consistent with the NMR data for this compound (see 

above). 

A comparison of the barriers of rotation around the N-N bond for uracils 3 and 2b 

(Table 1 vs. Table 3) shows that the substituent at the C6 does not significantly affect the 

barrier value. 

3. Conclusions 

In summary, conformational analysis of two 3-acetylamino-5,6-dihydrouracils was 

performed using the DFT B3LYP/6-311++G(d,p) method. It was found that these com-

pounds exist as mixtures of 4 rotamers due to restricted rotations around the N-N and C-

N bonds. The thermodynamic and kinetic parameters for interconversion of the all rota-

mers of 6-unsubstituted dihydrouracil were determined in the gas phase and DMSO so-

lution using the polarizable continuum model (PCM). The calculations showed that the s-

cis isomers relative to the amide C-N bond are significantly more stable than the corre-

sponding s-trans isomers. The interconversion between the all rotamers are characterized 

by fairly high energy barriers (about 18–20 kcal/mol). The DFT calculations for 3-acetyla-

mino-6-(4-methylphenyl)-5,6-dihydrouracil in DMSO solution (PCM) gave results similar 

to those for the 6-unsubstituted analog. 
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