The 29th Intl Electronic Conference on Synthetic Organic Chemistry

MDPI

14-28 November 2025 | Online

Synthesis and Characterization of a Cationic BODIPY-Conjugated Polymer as a Fluorescent Probe for Bacterial Sensing

Carolina P. Urquiza, María E. Pérez, Sofía C. Santamarina, María E. Milanesio, and Edgardo N. Durantini

IDAS-CONICET, Departamento de Química, FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.

INTRODUCTION

The accurate detection of microorganisms is essential to optimize antimicrobial therapy [1]. The use of fluorescent probes has emerged as a promising strategy for the rapid identification of bacteria, as it enables the direct, sensitive, and real-time visualization of microbial cells [2].

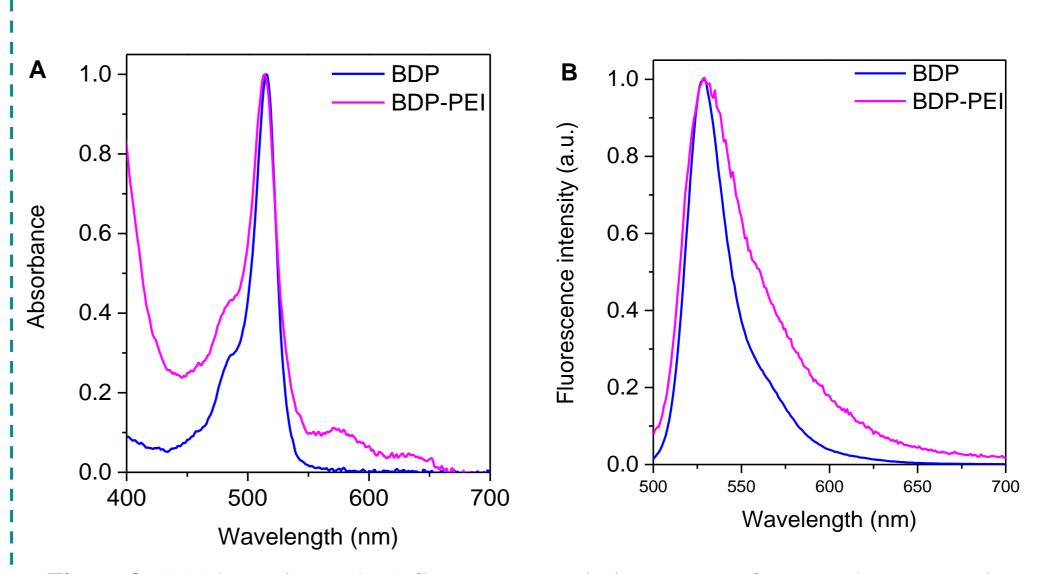
BODIPY derivatives has been proposed as fluorophores [3]. In this work, the synthesis of a hybrid fluorophore based on the conjugation of BODIPY with PEI (BDP–PEI), a polycationic aliphatic polymer due to the presence of amine groups, which can enhance interactions with bacterial envelopes, along with its spectroscopic characterization and its interaction with Grampositive bacteria (Staphylococcus aureus) using fluorescence microscopy.

RESULTS & DISCUSSION

The synthetic procedure of the BDP started by mixing pentafluorobenzaldehyde and 2,4-dimethylpyrrole in DCM, catalyzed by the addition of TFA (**Figure 1**). The mixture was stirred overnight followed by the addition of DDQ as the oxidant. After 4 h, TEA together with BF₃·OEt₂ was added to close the dipyrromethene ring, obtaining the BDP in 47% yield.

Figure 1. Synthesis of BDP.

The conjugation of BDP to PEI (**Figure 2**) was carried out in DMF by stirring at room temperature for 72 h. TLC analysis showed complete consumption of the starting BDP, with the resulting conjugate (BDP-PEI) remaining at the origin of the chromatographic plate. The solvent product was evaporated, and the resulting solid was washed several time with hexanes.


BDP + PEI

Ar, r.t., 72 h

$$\begin{array}{c} DMF \\ Ar, r.t., 72 h \end{array}$$
 $\begin{array}{c} DMF \\ H_2N \\ NH_2 \\ N$

Figure 2. Synthesis of BDP-PEI conjugate.

The UV-visible absorption spectra of BDP and BDP-PEI in DMF are shown in **Figure 3A**. This absorbance was attributed to the 0-0 vibrational band of the $S_0 \rightarrow S_1$ transition. The fluorescence emission spectra displayed a band at 515 nm, corresponding to the 0-0 vibrational band of the $S_1 \rightarrow S_0$ electronic transition. From these data, a Φ_F of 0.18 was determined for BDP-PEI (**Figure 3B**).

Figure 3. (A) Absorption and (B) fluorescence emission spectra of BDP and BDP-PEI ($l_{exc} = 483 \text{ nm}$) in DMF.

To investigate the cellular imaging of *S. aureus*, fluorescence microscopy was employed to assess the uptake of BDP-PEI by bacterial cells (**Figure 4**).

Figure 4. Microscopy images of *S. aureus* cells attached to a glass surface treated with 1.0 mM BDP-PEI for 10 min in the dark; cells under (A) bright field and (B) blue fluorescence channel.

CONCLUSION

The conjugate retained the characteristic absorption band at 505 nm and exhibited fluorescence emission at 515 nm, with a quantum yield of 0.18, confirming its suitability as a fluorophore. Fluorescence microscopy studies demonstrated the ability of BDP-PEI to associate with S. aureus cells, producing strong green emission that enabled clear visualization of individual bacteria. These findings indicate that BDP-PEI combines favorable spectroscopic properties with effective microbial labeling, highlighting its potential application as a diagnostic tool for pathogen sensing and monitoring.

REFERENCES

- 1. Walker et al. Biochemistry **2024**, 63, 2705–2713.
- 2. Becerra-González *et* al. *Tetrahedron* **2024**, *168*, 134334.
- 3. Durantini *et* al. *Eur. J. Med. Chem.* **2018**, *144*, 651–661.