

The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

Design and Characterization of Hybrid Hydrogel Architectures Based on Agarose and Functional Copolymers

R. Grosso*, F. Díaz-Carrasco, M.-V. de-Paz, N. Grus, M.-G. García-Martín, E. Benito

Department of Organic and Pharmaceutical Chemistry. Faculty of Pharmacy, Universidad de Sevilla. 41012, Sevilla. Spain.

*e-mail: rgb1406@hotmail.com

INTRODUCTION & AIM

Agarose, a marine-derived polysaccharide, is a widely used biomedicine due to its biocompatibility, gel-forming capacity, and inert nature [1]. However, its poor biodegradability and mechanical limitations restrict further clinical use [2]. To address this, we propose the preparation of novel biodegradable combining semi-IPN agarose (component with synthetic copolymers (component 2) based on methacrylate monomers like 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), 2-hydroxyethyl methacrylate (HEMA) or oligo(ethylene glycol) methacrylate (OEGMA). The incorporation of other methacrylate-type monomers (furfuryl [FMA] and vinyl [VMA] methacrylates) will enable labile cross-linking, thereby enhancing degradation and preventing the formation of microplastics.

METHODS

25 copolymers were synthesized via optimized living polymerizations (RAFT and ATRP). Cross-linking was carried out via ionic or covalent (Diels–Alder or thiol–ene) interactios, either individually or within an agarose matrix (*Figures 1* and *2*). The resulting 7 hydrogels were characterized by NMR, SEC, SEM, and rheological analyses.

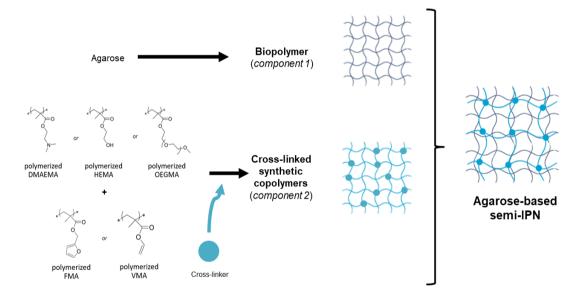
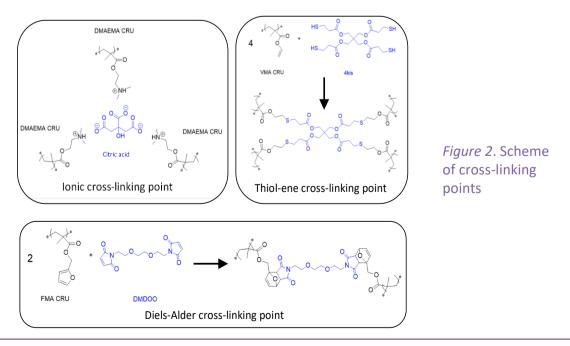



Figure 1. Scheme of semi-IPN formation and used monomers.

FUTURE WORK / REFERENCES

- Future work will focus on validating the responsive behaviors of the hydrogels, assessing thermosensitivity and pH responsiveness, and evaluating the effects of freeze-drying.
- Additional studies will also explore their potential in tissue engineering and drug delivery.

RESULTS & DISCUSSION

Both polymerization techniques successfully yielded copolymers with the targeted monomer ratios, although RAFT provided narrower dispersity (*Table 1*). As seen in *Figure 3*, HEMA produced the strongest hidrogels under identical cross-linking conditions, while thiol—ene cross-linking became the most effective strategy, offering superior rheological properties.

Table 1. Selected copolymers: theoretical data vs. experimental data (NMR and SEC).

Copolymer	Theoretical data			Experimental data (NMR) a		Experimental data (SEC)		
	Monomers ratio (mol %)	Degree of polymerization	M _n	Monomers ratio (mol %)	Degree of polymerization	M w b	M " b	M _w /M _n ^b
OEGMA+FMA	80:20 (OEGMA:FMA)	120	33,000	82.7:17.3 (OEGMA:FMA)	107	20,500	17,900	1.14
HEMA+VMA	70:30 (HEMA:VMA)	60	7,700	72:28 (HEMA:VMA)	99	43,000	20,300	2.12
HEMA+FMA	80:20 (HEMA:FMA)	60	8,400	69:31 (HEMA:FMA)	118	146,400	87,200	1.68
DMAEMA+FMA	70:30 (DMAEMA:FMA)	60	9,800	65:35 (DMAEMA:FMA)	67	56,100	29,900	1.88

^aMol % for each monomer calculated using integrals for the peaks at δ 3.38 ppm (from OEGMA moiety: 3 H), δ 3.58 ppm (from HEMA moiety: 2 H), δ 2.57 ppm (from DMAEMA moiety: 2 H), δ 7.44-7.67 ppm (from FMA moiety: 1 H) and δ 7.11 ppm (from VMA moiety: 1 H), divided by the corresponding number of H. ^bDetermined by SEC against poly(methyl methacrylate) standards.

DMAEMA: 2-(N,N-Dimethylamino)ethyl methacrylate; FMA: furfuryl methacrylate; HEMA: 2-hydroxyethyl methacrylate; NMR: nuclear magnetic resonance; OEGMA: oligo(ethylene glycol) methacrylate; SEC: size exclusion chromatography; VMA: vinyl methacrylate.

Diels—Alder cross-linked networks did not exhibit retro-Diels—Alder behavior upon heating unless equilibrium was deliberately shifted. Incorporation of agarose to form semi-IPN enhanced the rheological performance of all systems compared to blanks (*Figure 3a*). SEM analysis revealed well-defined microporous architectures, supporting the potential of these semi-IPN for

Agarose+DMAEMA+FMA double cross-linked (G')

Agarose+DMAEMA+FMA double cross-linked (G')

DMAEMA+FMA double cross-linked (G')

Blank for DMAEMA+FMA (G')

biomedical applications (Figure 3b).

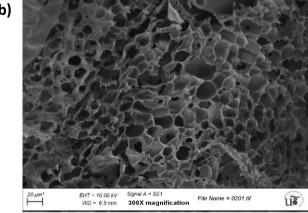


Figure 3. a) Frequency sweep $(\pi/25 \text{ to } 200\pi \text{ rad/s})$ of selected systems and blanks. Filled symbols = G'; open symbols = G''. b) Microstructure of semi-IPN with agarose and cross-linked HEMA-VMA copolymer (70%:30%).

CONCLUSIONS

- Novel agarose-based biomaterials with enhanced mechanical strength and porous microstructures were developed for biomedical applications.
- Both RAFT and ATRP effectively yielded copolymers from HEMA, OEGMA,
 DMAEMA, FMA, and VMA with targeted monomer ratios.
- Gelation was accomplished through both covalent and ionic cross-linking, with Diels-Alder yielding the most robust semi-IPN.

[1] Molecules. 2023, doi:10.3390/molecules21111577[2] Pharmaceutics. 2023, doi:10.3390/pharmaceutics15102514

This research is part of the R+D+i project PID2020-115916GB-I00, which is funded by MICIU/AEI/10.13039/501100011033).