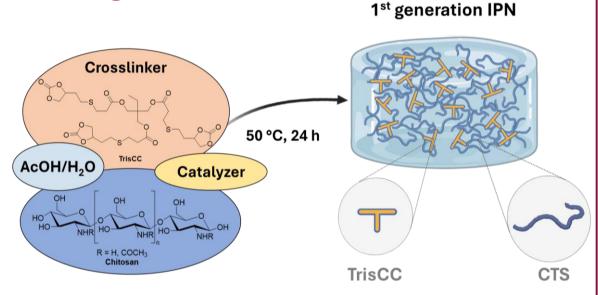
The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

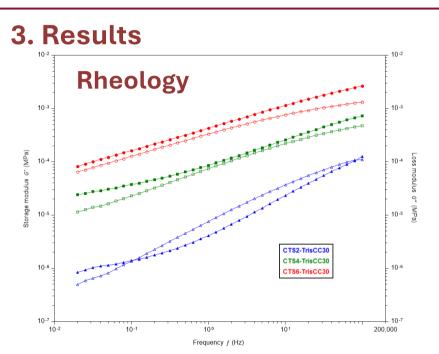
COMPARATIVE EVALUATION OF CHITOSAN-BASED HYDROGELS IN THE IMPROVEMENT OF AGRONOMIC PROPERTIES

Álvaro Torrecillas-Cortés*, Fátima Díaz-Carrasco, Elena Benito, M.ª de Gracia García-Martín, and M.ª Violante de Paz.

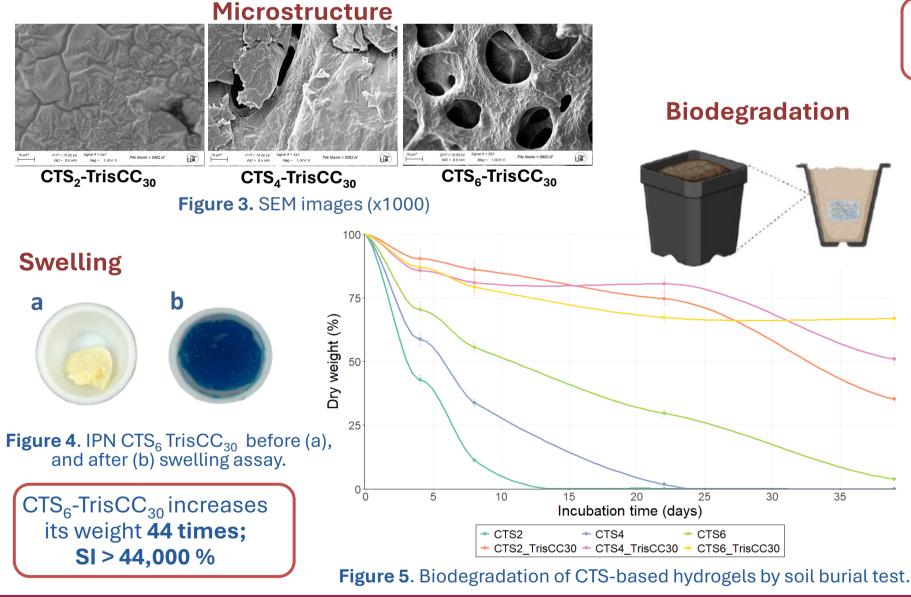
Organic and Pharmaceutical Chemistry Department, University of Seville, 41012-Seville, Spain.


*alvtorcor@alum.us.es

1. Introduction


The urgent need for sustainable agricultural practices has driven the development of novel materials to address key challenges such as excessive fertilizer use, inefficient water management, and soil degradation [1]. Among emerging biopolymers, chitosan (CTS)—a biodegradable and biocompatible derivative of chitin—stands out for its versatility. It shows antimicrobial activity, enhances nutrient uptake and root growth, and activates plant defense mechanisms, making it suitable for eco-efficient crop management [2]. Building on these features, this work employs 1st generation interpenetrated polymeric networks (IPN) based on CTS crosslinked with tris(cyclic carbonate) (TrisCC), designed as controlled-release biostimulant delivery systems (BDS) [3].

2. Preparation of CTS-based 1st generation-IPN


The IPN syntheses employed TrisCC, prepared click thiol-ene via chemistry, as crosslinker. Three IPN systems were through obtained the aminolysis of TrisCC by the amine groups of chitosan (CTS), using different CTS concentrations (2-6% w/v) to modulate the network characteristics (Figure 1).

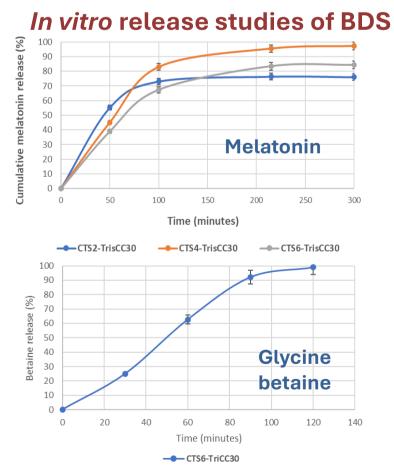

Figure 1. Preparation of 1st generation IPN by NIPU methodology. CTS concentration 2, 4 or 6% (w/v); crosslinking degree 30%.

Figure 2. Frequency sweep of IPN synthesized at 2, 4, 6% CTS, with 30% TrisCC. Filled symbol: G'; empty symbol: G''.

Crosslinking: ↑ rigidity & elasticity
Higher [CTS]:↑ G', G", and η*
Highest G_n⁰ in CTS₆-TrisCC₃₀: strongest IPN

Figure 6. Cumulative melatonin and glycine betaine release from CTS-based hydrogels.

4. Conclusions

- CTS-based hydrogels showed enhanced mechanical strength, controlled biodegradation, and superior water absorption.
- Enabled sustained release of melatonin and glycine betaine, reaching bioactive levels in water.
- CTS₆-TrisCC₃₀ displayed the best overall performance in structure, swelling, and release control.
- Future perspective: validation under abiotic stress and expansion to other bioactive compounds for crop applications.

References

- [1] Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Chem. Rev. **2020**, 120, 7642.
- [2] Wang, H.; Qu, G.; Liu, X.; He, M.; Yin, C.; Xu, R. J. Environ. Chem. Eng. **2025**, 13, 116385.
- [3] Nangia, S.; Warkar, S.; Katyal, D. J. Macromol. Sci., Part A **2018**, 55, 747.

MINISTERIO
DE CIENCIA, INNOVACIÓN
Y UNIVERSIDADES

AGENCIA
ESTATAL DE
INVESTIGACIÓ

This research was funded by the Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033), grant number PID2020-115916GB-I00.