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1. Introduction

The urgent need for sustainable agricultural practices has driven the development of novel materials to address key challenges
such as excessive fertilizer use, inefficient water management, and soil degradation [1]. Among emerging biopolymers, chitosan
(CTS)—a biodegradable and biocompatible derivative of chitin—stands out for its versatility. It shows antimicrobial activity,
enhances nutrient uptake and root growth, and activates plant defense mechanisms, making it suitable for eco-efficient crop
management [2]. Building on these features, this work employs 15t generation interpenetrated polymeric networks (IPN) based on
CTS crosslinked with tris(cyclic carbonate) (TrisCC), desighed as controlled-release biostimulant delivery systems (BDS) [3].
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Figure 6. Cumulative melatonin and glycine
betaine release from CTS-based hydrogels.

Figure 5. Biodegradation of CTS-based hydrogels by soil burial test.

4. Conclusions

« CTS-based hydrogels showed enhanced mechanical strength, controlled biodegradation, and superior water absorption.
 Enabled sustained release of melatonin and glycine betaine, reaching bioactive levels in water.
* CTS,-TrisCC;, displayed the best overall performance in structure, swelling, and release control.

* Future perspective: validation under abiotic stress and expansion to other bioactive compounds for crop applications.
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