The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

Abiotic surface degradation induced by ozonation on poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends

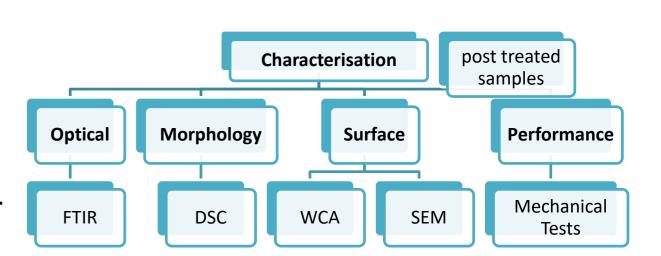
N. Kołcz^{a,b}, K. Gutiérrez-Silva^a, Anna Masek^{b,*}, O. Gil-Castell^{a,*}, J.D. Badia-Valiente^{a,*}

^aResearch Group in Materials Technology and Sustainability (MATS). Department of Chemical Engineering, School of Engineering, University of Valencia, Spain

^bResearch Group for the Analysis of Aging, Degradation, and Stabilization Processes of Polymer Materials and the Design and Study of Polymer Biocomposites from Renewable Resources. Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Poland

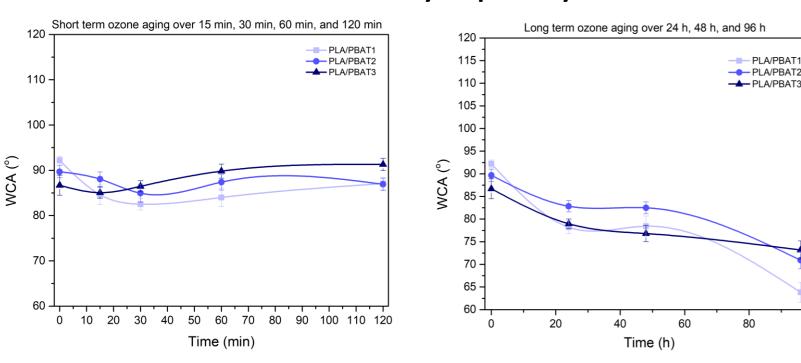
*anna.masek@p.lodz.pl, oscar.gil@uv.es, jose.badia@uv.es

INTRODUCTION & AIM


Biopolymers emerged as sustainable alternatives to conventional plastics due to their biocompatibility, biodegradability and non-toxicity, offering an environmentally friendly solution to reduce plastic pollution [1], [2]. However, environmental factors, particularly oxygen and ozone exposure, can promote polymer degradation and strongly influence material performance, affecting mechanical and structural stability.

This study aims to evaluate the consequences of short-term (0-2 h) and long-term ozone aging (24-96 h) of commercial poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend films, commonly used in rigid and flexible packaging. By examining the structural modifications in aged materials, their resilience and changes in key properties could be assessed.

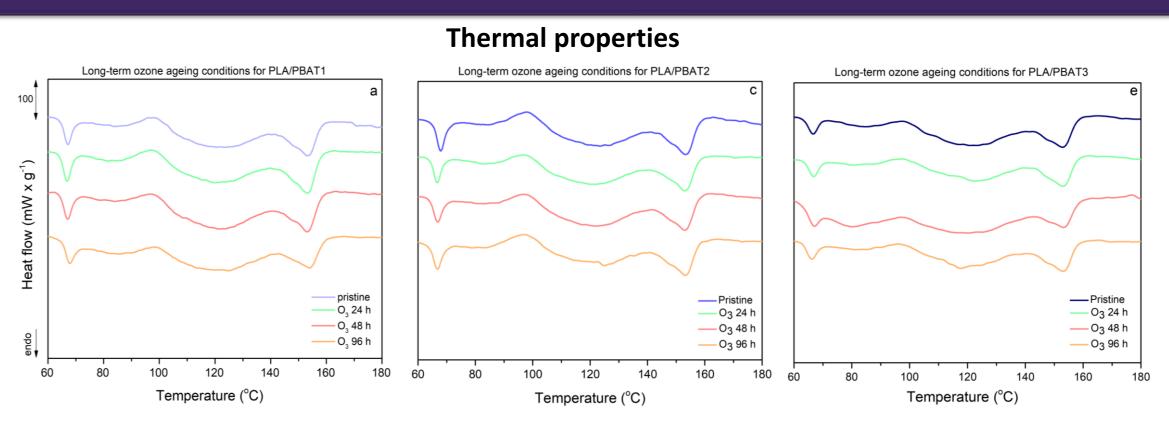
METHOD


Oxidative O₃ simulated ageing:

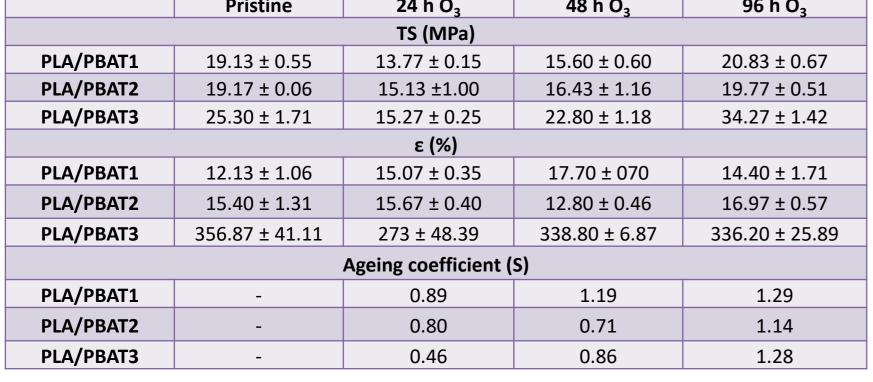
- Films 100 μm thick.
- Anseros SIM 6050 T chamber.
- Temperature 40 °C.
- Ozone concentration 300 pphm.
- Short-term: 15, 30, 60 and 120 min.
- Long-term: 24, 48, 72 and 96 h.

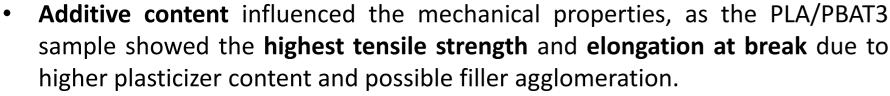
RESULTS & DISCUSSION

Surface hydrophilicity

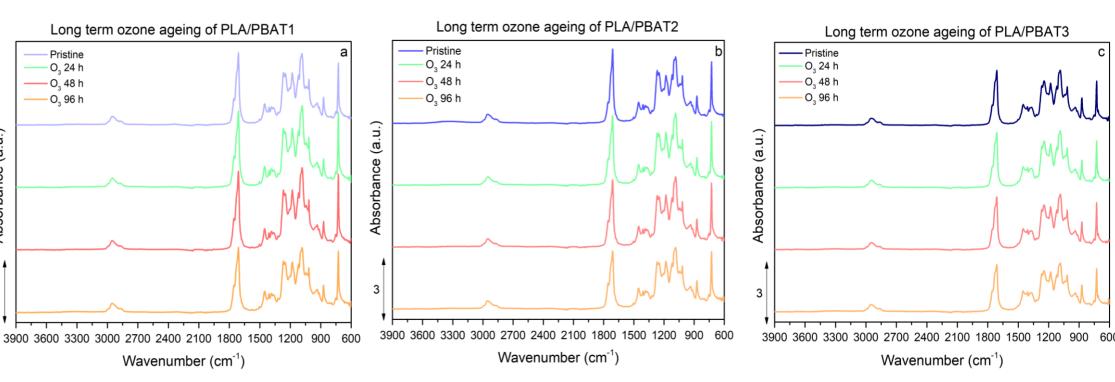


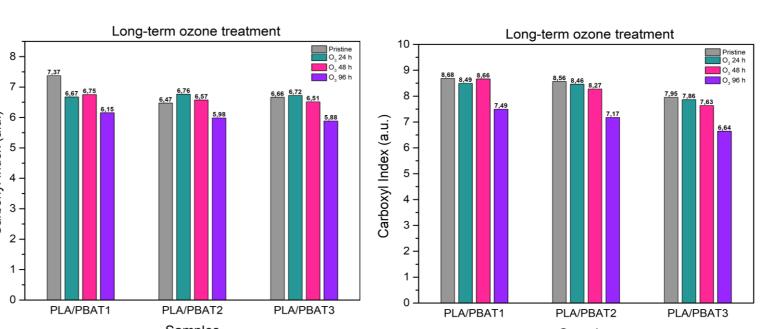
- **Short-term ozonation** (≤2 h) caused only **surface sterilization**, without altering surface characteristics.
- **Prolonged exposure** (≥24 h) **increased** surface **hydrophilicity**, as water contact angle decreased from 92.2° to 63.8° after 96 h.

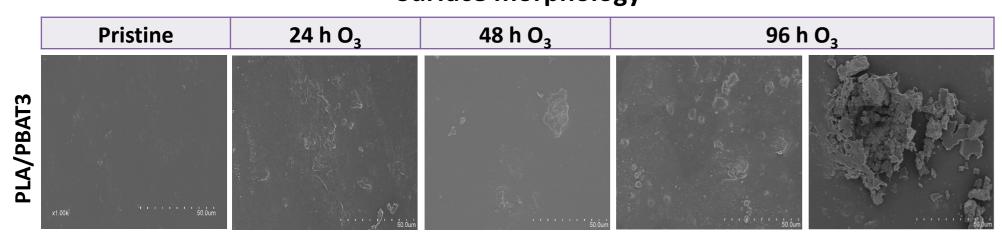

Mechanical performance


19.13 ± 0.55 19.17 ± 0.06	TS (MPa) 13.77 ± 0.15 15.13 ±1.00	15.60 ± 0.60	20.83 ± 0.67
		15.60 ± 0.60	20.83 ± 0.67
19.17 ± 0.06	15 13 +1 00		
	13.13 ±1.00	16.43 ± 1.16	19.77 ± 0.51
25.30 ± 1.71	15.27 ± 0.25	22.80 ± 1.18	34.27 ± 1.42
ε (%)			
12.13 ± 1.06	15.07 ± 0.35	17.70 ± 070	14.40 ± 1.71
15.40 ± 1.31	15.67 ± 0.40	12.80 ± 0.46	16.97 ± 0.57
356.87 ± 41.11	273 ± 48.39	338.80 ± 6.87	336.20 ± 25.89
Ageing coefficient (S)			
-	0.89	1.19	1.29
-	0.80	0.71	1.14
-	0.46	0.86	1.28
	12.13 ± 1.06 15.40 ± 1.31 356.87 ± 41.11	ε (%) 12.13 ± 1.06	ϵ (%)12.13 ± 1.0615.07 ± 0.3517.70 ± 07015.40 ± 1.3115.67 ± 0.4012.80 ± 0.46356.87 ± 41.11273 ± 48.39338.80 ± 6.87Ageing coefficient (S)-0.891.19-0.800.71

- higher plasticizer content and possible filler agglomeration.
- A slight increase after prolonged oxidation suggested partial surface reinforcement rather than degradation, confirming that the material retained its mechanical stability, whereas additives buffered the effects of ozone.




No variations in thermal transition temperatures was observed, indicating that the bulk thermal stability of PLA/PBAT films were maintained after ozonation.


Chemical structure

- No formation of new functional groups was confirmed.
- Carbonyl and carboxyl indexes slightly decreased (~17% and 16%) after 96 h of ozone suggesting mild treatment, surface oxidation and partial degradation oxidized products.

Surface morphology

- A parabolic trend in surface evolution was found, with initial oxidation after 24 h, temporary reinforcement at 48 h, and subsequent re-degradation after 96 h.
- The observed modifications were **limited** to the **surface**, without bulk penetration.

CONCLUSION

Long-term ozonation caused only surface modification without bulk degradation. The polymer matrix remained stable, demonstrating high chemical resistance due to the absence of reactive double bonds. The parabolic character of surface degradation suggests that ozonation time can either enhance or weaken the surface properties

FUTURE WORK / REFERENCES

Future work will evaluate the influence of prolonged oxidation processes (over 96 h) to verify whether ozone treatment affects only the surface or also causes bulk modifications. Furthermore, the effect of ozone treatment on the biodegradation rate and microbial activity of biodegradable polymer blends will be investigated.

[1] J.-G. Rosenboom, R. Langer, and G. Traverso, "Bioplastics for a circular economy," Nat Rev Mater, vol. 7, no. 2, pp. 117–137, Jan. 2022, doi: 10.1038/s41578-021-00407-8.

[2] G. I. Edo et al., "Biopolymers: An inclusive review," Hybrid Advances, vol. 9, p. 100418, Jun. 2025, doi: 10.1016/j.hybadv.2025.100418.

Funding received from the Agència Valenciana de la Innovació (AVI); BIOFAST project: INNEST/2022/295