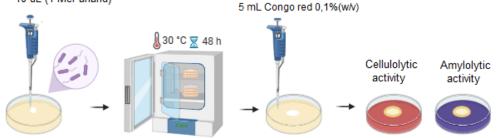
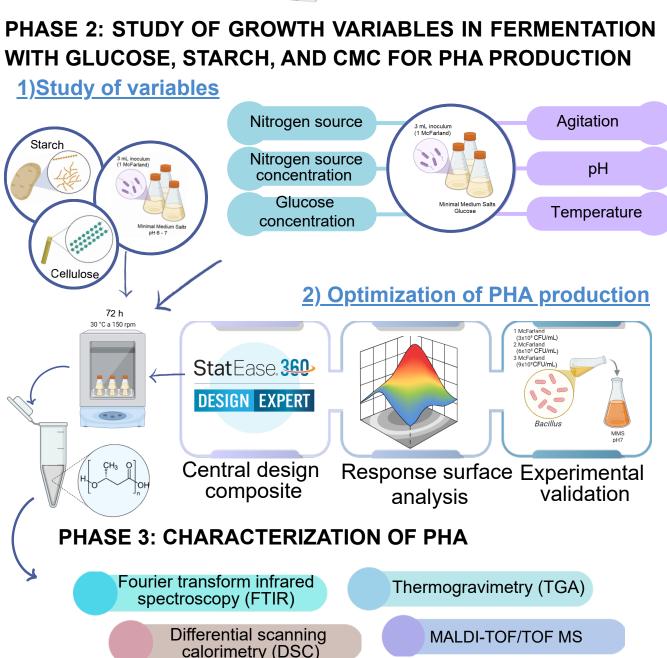
The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

Exploiting starch and cellulose biodegradation for microbial polyhydroxyalkanoate (PHA) production

Melisa Juliana González Castillo, William Fernando Hidalgo Bucheli, Julián Ricardo González Corredor, Yuly Andrea Prada Vargas, Cristian Danilo Vargas Moreno Chemistry, Industrial University of Santander, Bucaramanga 680002, Colombia Melisa 1015@hotmail.com


INTRODUCTION


In Colombia, annual plastic consumption reaches nearly 1.2 million tons, resulting in a significant impact on the environment and public health, as most of this waste ends up in landfills that pollute mangroves, rivers, and seas. To address the problems associated with non-biodegradable and non-renewable plastics, alternative materials such as biodegradable and non-toxic polymers have been promoted, among which polyhydroxyalkanoates (PHA) stand out. These microbially derived biopolymers are biocompatible, can be produced from various renewable carbon sources, and are suitable for both single-use plastics and biomedical applications, making them consistent with circular economy principles (Jin et al., 2023) (Gautam et al., 2024).

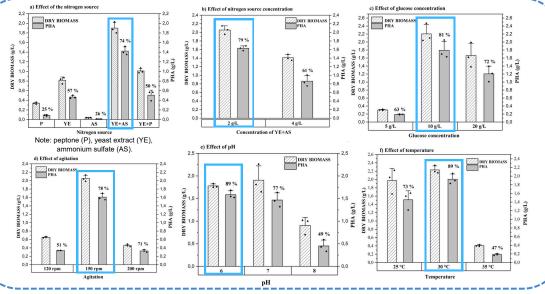
This study aimed to evaluate PHA production by **Bacillus thuringiensis** (C01) using starch and carboxymethylcellulose (CMC) as carbon sources, and to optimize the process through a central composite design with response surface methodology.

METHODOLOGY

PHASE 1: EVALUATION OF AMYLOLYTIC AND CELLULOLYTIC ACTIVITY 10 uL (1 McFarland) 5 mL Lugol's 1 % (w/v) 5 mL Lugol's 1 % (w/v) 5 mL Lugol's 1 % (w/v) 5 mL Lugol's 1 % (w/v)

RESULTS & DISCUSSION

AMYLOLYTIC AND CELLULOLYTIC ACTIVITY


<u>Starch</u> <u>hydrolysis</u>

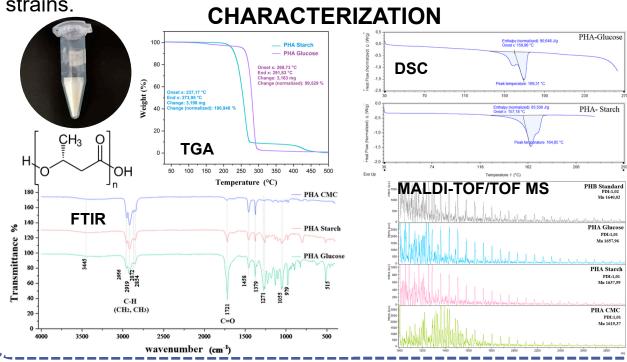
<u>CMC</u> <u>hydrolysis</u>

PHA PRODUCTION

Metabolic efficiency in PHA production at pH 7 is related to enzyme activity. Shamala et al. (2012) reported that the activity of α-amylase produced by *Bacillus sp.* improves at neutral pH compared to acidic pH.

OPTIMIZATION

 $PHA\left(\frac{g}{L}\right) = -(0.888439) + (0.262760 * N) + (0.198049 * S) -(0.006263 * N * S) - (0.024063 * N^2) - (0.006189 * S^2)$


and CMC under favorable

conditions

PHA extraction (g/L)

Objective of the control of t

The optimization resulted in a maximum production of 2.78 g/L of PHA, which was more efficient than that reported by Ibrahim et al. (2025), who used 40 g/L of starch in the optimization of PHA (2.17 g/L) with the *Bacillus australimaris*. Similarly, Basak et al. (2024) and Odeniyi & Adeola (2017) reported lower biopolymer production when using starch as a carbon source for *Bacillus* strains.

CONCLUSION

ACKNOWLEDGEMENTS

REFERENCES

The amylolytic activity of **Bacillus thuringiensis** highlights its potential for using starch-rich agroindustrial residues as substrates for sustainable poly(3-hydroxybutyrate) (PHB) production.

