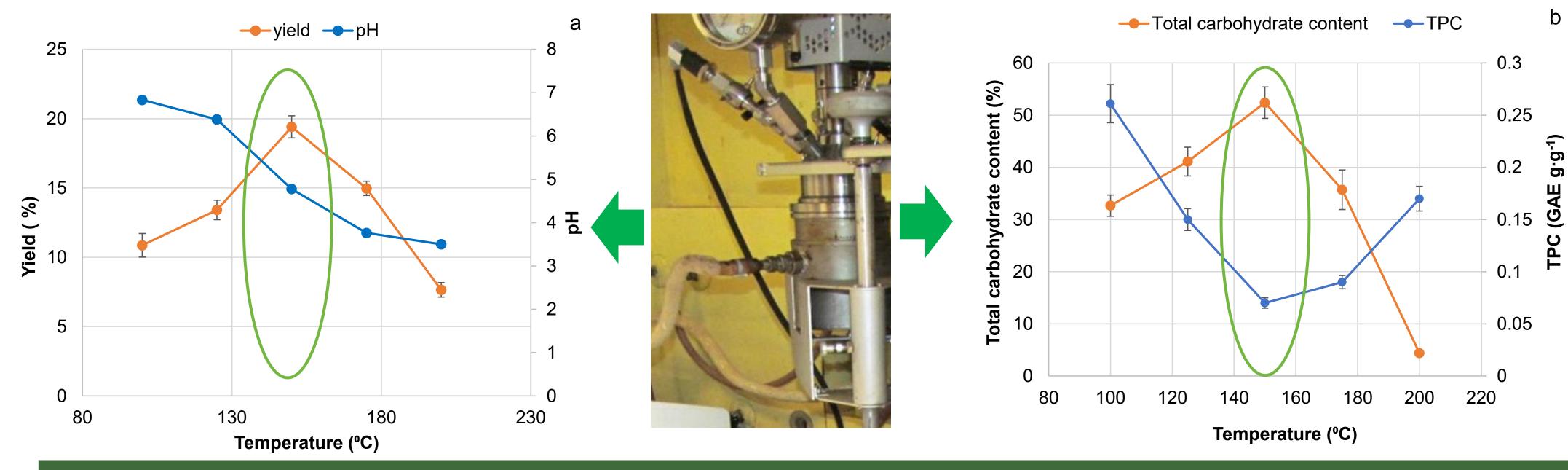


Pine Bark as a Renewable Feedstock for the Production of Rigid Polyurethane Foam

Matiss Pals, Aleksandra Vjalikova, Laima Vevere, Alexandr Arshanitsa Latvian State Institute of Wood Chemistry, Riga, LV-2150, Latvia

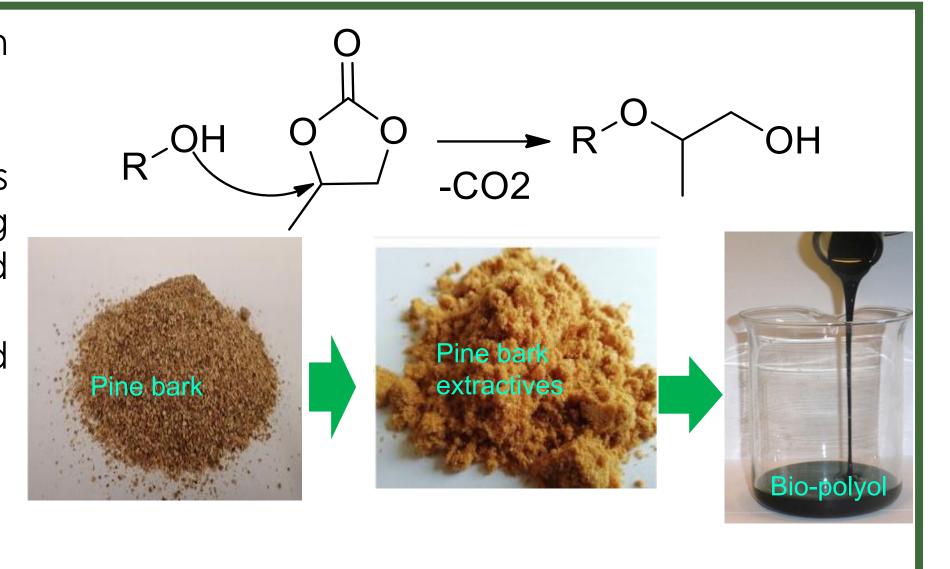

Introduction & Objectives

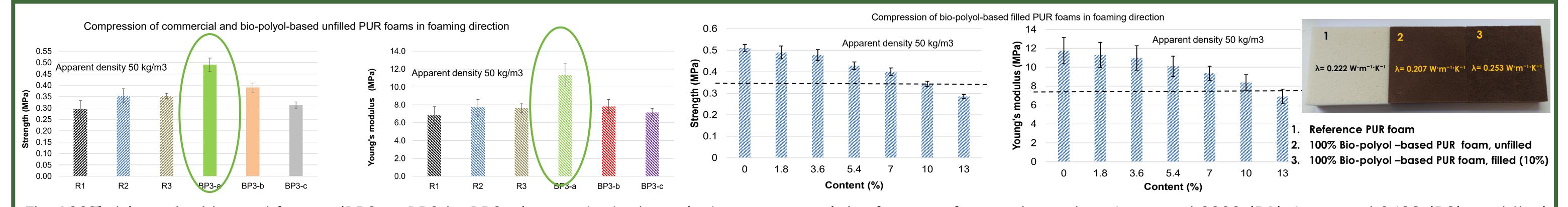
The Challenge: A Reliance on Fossil-Fuel Plastics

This study evaluates pine bark—an abundant and underexploited forestry by-product (300–400) million m³ globally/year)—as a complete renewable resource for rigid polyurethane (PUR) foam production.

Objectives:

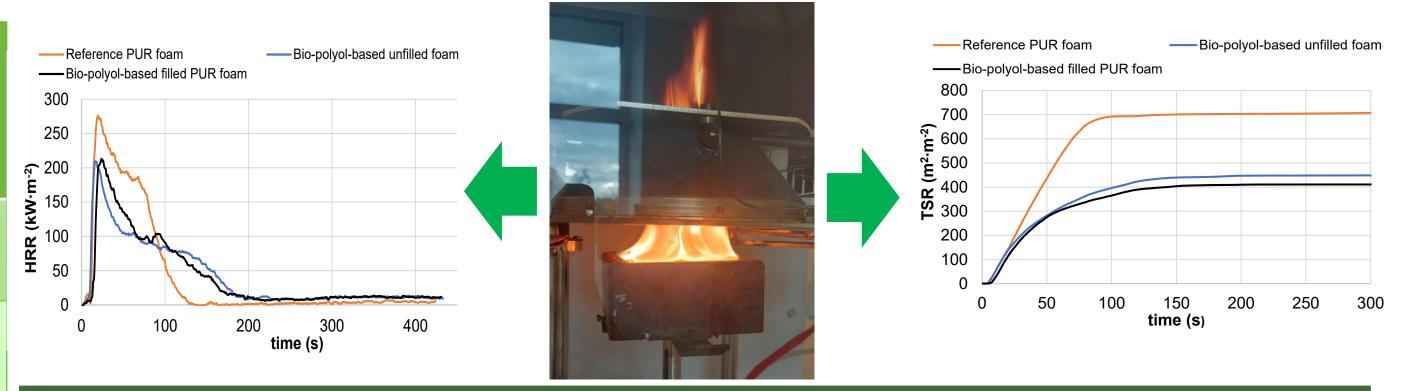
- 1. Optimize a scalable, pressurized water extraction method to isolate carbohydraterich, reactive extractives from pine bark.
- 2. Synthesize bio-polyols using a "green" oxypropylation agent, propylene carbonate (PC), as a safe, non-flammable alternative to hazardous propylene oxide (PO).
- 3. Formulate bio-polyol-based rigid PUR foams and evaluate their mechanical, thermal isolation, and fire safety performance against a commercial reference.
- 4. Investigate the use of the residual extracted bio-filler, bark as a circular-economy valorizing the entire biomass stream.




Ground pine bark was processed in a Parr reactor using only deionized water. Optimal Conditions: 150 °C for 0.5 hours. This temperature was a "sweet spot": lower temperatures had lower extractives yield, while higher temperatures degraded them, reducing yield.

The extractives were liquefied into polyols by reacting them with propylene carbonate (PC) with varying PC/OH ratios from 1 to 5.

Optimal Formulation: A PC/OH molar ratio of 3


- •This ratio was a critical engineering trade-off. Lower ratios (e.g., 2.0) resulted in extremely high viscosity (85 Pa·s), making foam processing difficult. Higher ratios (e.g., 5.0) reduced viscosity but also diluted the renewables content.
- •Output (Bio-Polyol BP3-a): The optimal polyol (PC/OH=3) had ideal properties for PUR foam formulation:
 - Viscosity: 14.9 Pa·s (at 25 °C)
 - **OHV**: 527 mgKOH·g⁻¹
 - Biomass Content: 27%

The 100% bio-polyol-based foams (BP3-a, BP3-b, BP3-c) were tested against a commercial reference foams based on Lupranol 3300 (R1), Lupranol 3422 (R2) and their combination (R3.). The PUR foam (BP3-a) based on the bio-polyol synthesized at PC/OH = 3 demonstrated the highest compressive strength and modulus—exceeding those of the commercial reference by 30–35% and also exhibited a 9% improvement in thermal insulation properties. The residual bark from extraction was successfully used as a natural filler in the bio-polyol-based foam, creating a full-valorization pathway. At up to 10 wt% filler, the filled bio-foam's mechanical properties were comparable to the commercial reference foam.

Fire Safety Parameter ISO 5660-1	Reference foam	100% Bio- polyol –based Foam, unfilled	100% Bio-polyol –based Foam, filled (10% filler)
Peak Heat Release Rate (PHRR), kW·m ⁻²	278±2	208±9	207±5
Max Avg. Rate of Heat (MARHE), kW·m ⁻²	176±8	124±6	125±3
Total Smoke Release (TSR), m²·m ⁻²	764±51	476±21	479±30
Average Mass Loss Rate, %:s-1	0.66±0.04	0.44±0.04	0.43±0.05

The bio-polyol-based foam outperformed the reference in every key metric for fire hazard assessment, and the addition of filler did not negatively impact the superior fire performance of the biofoam matrix.

Conclusions

- 1. Pressurized water extraction at 150 °C for 30 min is the optimal "green" method to produce high-yield (25%), carbohydrate-rich (57%) extractives from pine bark.
- 2. "Green" oxypropylation with propylene carbonate at a PC/OH ratio of 3 yields a bio-polyol with ideal processing viscosity (14.9 Pa s) and high bio-content (27%).
- 3. The 100% bio-polyol-based foam is a superior product, demonstrating 30–35% higher compressive properties in the foaming direction and 9% better thermal insulation than the commercial reference.
- 4. Crucially, the bio-polyol-based foam exhibits significantly enhanced fire safety according to ISO-5660-1, with a 25% lower Peak Heat Release Rate and a 38% lower Total Smoke Release, attributed to its high char-forming tendency.
- 5. Pine bark is a promising, sustainable resource for the complex, full valorization of PUR foam, yielding both a high-performance bio-polyol and a viable natural filler.

Acknowledgments

This research is supported by the project: Innovation in Forest Management and Value Chain for Latvia's Growth: New Forest Services, Products and Technologies (Forest4LV) – Project Nr. VPP-ZM-VRIIILA-2024/2-0002.