The 3rd International Online Conference on Polymer Science

19-21 November 2025 | Online

Chemical recycling of PA6 from discarded fishing nets using choline chloride-ethanolamine (ChCI:MEA) as Deep Eutectic Solvent (DES)

B. Paz Castillo, M.C. Arango¹, K. Gutiérrez-Silva¹, M. Izquierdo¹, V. Martinez-Soria¹, A. Cháfer ^{1*}

¹ Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, Burjassot, Valencia 46100, Spain

* amparo.chafer@uv.es

INTRODUCTION & AIM

The extensive use of synthetic polymers, especially in the fishing industry, has led to the accumulation of **non-biodegradable plastic waste** in marine ecosystems.

Around 10% of total marine plastic waste comes from abandoned polymeric fishing gear, mainly made of **polyamide 6** (PA6).

H (;

Highest proportion of macro- and mega-plastics (>50 cm) floating on the ocean's Surface.

PA6 is a versatile engineering polymer often used in fishing gear applications due to its good mechanical resistance, thermal stability, chemical durability and low costs. It is produced via ring-opening polymerization from the monomer ϵ -caprolactam

Recycling and recovery

Mechanical recycling

Chemical recycling

Solvolysis using Deep Eutectic Solvents (DES)

Depolymerization using solvents to disrupt the polymer chains.

PA6 \Rightarrow Cleavage of amide bonds \Rightarrow Intramolecular cyclization \Rightarrow Formation of ϵ -caprolactam

DES Hydrogen bond aceptor: Choline chloride (ChCl)
Hydrogen bond donor: Monoethanolamine (MEA)

Low-melting solvent

METHOD

Materials

Fishing nets: Pretreatment by AIMPLAS Institute of Technology.

DES: Mixture of MEA (C_2H_7NO) 99% and ChCl ($C_5H_{14}CINO$) \geq 98%. Different molar ratios stirred at 80 °C for 1h.

Catalyst: 4-(dimethylamino)pyridine (DMAP)

Solvolysis process Fishing nets Batch reactor under N₂ atmosphere, with EG-cooled reflux

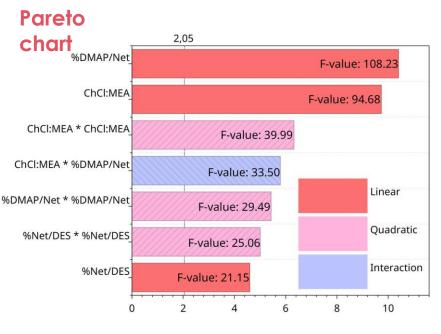
Post-Solvolysis - Conversio

- i. Dilution with 96% Ethanol 1:1 (PA6 precipitation).
- ii. Filtration → PA6 dissolution efficiency.
- iii. Washed with EtOH until no solvent remained in the filter cake.

Design of experiments (DoE)

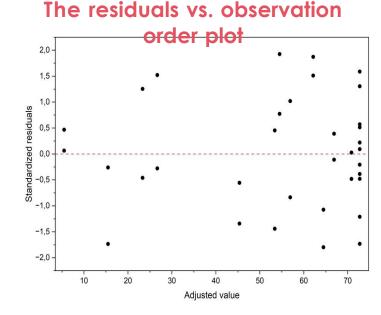
Central Composite Design (CCD)

3 Factors and 2 replicates:


- Ratio of net mass to DES (%Net/DES):: 6.64 13.36 %
- Proportion of catalyst relative to net mass (%DMAP/Net):
 0.95 11.05 %
- Molar ratio of ChCl to MEA in the DES (ChCl:MEA): 1:2.64 -1:9.36

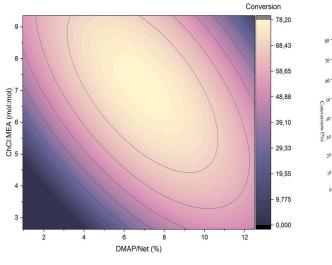
Contour plot

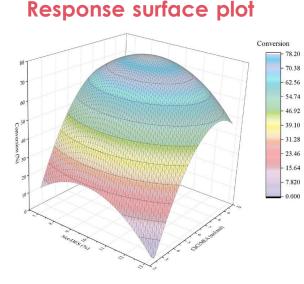
Fixed parameters: 158 °C, 2 h


Response variable: PA6 conversion

RESULTS & DISCUSSION

The model obtained from the CCD is statistically significant: (p-value = 0.00 (< 0.05))


- Main factors: %DMAP/Net and ChCl:MEA ratio
- Highest F-value → Most significant variables
- Significant interactions: ChCl:MEA × %DMAP/Net



Random dispersion around zero. No systematic error or bias was present.

Significant quadratic effects: (ChCl:MEA)²,
 (%DMAP/Net)²

Regression F-value = 48.47 →Strong relationship between the factors and X(PA6)

Statistically significant quadratic terms: Evidence of curvature, the optimum not achieved at the extremes.

Maximum PA6 conversion was achieved at intermediate

9.29% (w/v) Net/DES

Optimized conditions: 6.97% (w/w) Net/DMAP

%Net/DES and ChCl:MEA ratio.

1:7.12 ChCl:MEA

CONCLUSION

- ChCI:MEA-based solvolysis effectively enabled the chemical recycling of PA6 fishing nets under mild conditions.
- The second-order model was statistically significant and accurately predicted the depolymerization behavior.
- Catalyst concentration and DES molar ratio were the most influential factors.
- The optimized conditions yielded up to $^{\sim}80\%$ PA6 conversion.

FUTURE WORK / REFERENCES

- Conduct separation of DES and ϵ -caprolactam and purification for resynthesis.
- Comparation of ionic liquids for PA6 depolymerization.

¹ Gil-Castell, O., Jiménez-Robles, R., Gálvez-Subiela, A., Marco-Velasco, G., Cumplido, M. P., Martín-Pérez, L., Cháfer, A., & Badia, J. D. (2024). Factorial analysis and thermal kinetics of chemical recycling of poly(ethylene terephthalate) aided by neoteric imidazolium-based ionic liquids. Polymers, 16(17), 2451.

² Musale, R. M., & Shukla, S. R. (2016). Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. International Journal of Plastics Technology, 20(1), 106-120.

³ Chaabani, C., et al. (2016). Impact of solvolysis process on both depolymerization kinetics of nylon 6 and recycling carbon fibers from waste composite. INRAe

zation of GENERALITAT VALENCIANA

