The 1st International Online Conference on Gels

MDPI

03-05 December 2025 | Online


Designing peptide hydrogels for localised therapeutics in treating Glioblastoma

Nazaruddin M. Nasser^{1,2}, Alberto Saiani^{1,2}, Christos Tapeinos¹
Division of Pharmacy & Optometry, Facutly of Biology, Medicine & Health, University of Manchester¹
Manchester Institute of Biotechnology²

INTRODUCTION & AIM

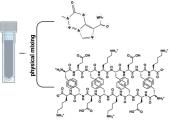
Glioblastoma & Current Treatment

- Grade IV brain tumour, which is highly malignant with a very poor prognosis.
- Patients suffer from:
 - High tumour recurrence rates
 - Inoperable cancer cell population.

Temozolomide, as standard systemic chemotherapy, faces primary limitations of low Central Nervous System (CNS) bioavailability and myelosuppression

Promising Approach: Self-Assembled Peptide Hydrogels

- Are peptide-based, which self-assemble into a β-sheet network
- SAPHs are soft and injectable.
- They have increasing traction for in vivo drug delivery.
- Their biocompatibility and ability to encapsulate diverse therapeutics make them ideal candidates for localising chemotherapy at post-resection sites


Aim:

- · Developing an injectable peptide-based drug delivery system for post-resection
- · Validating preservation of relevant small molecule drug (TMZ) in SAPH
- · Employing relevant pathophysiological models to validate the therapeutic efficacy

METHOD

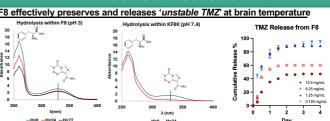
1. Formulation of TMZ in SAPH of different gelation pH

Peptide Sequence	Peptide Concentration	Gelation pH
F8	30 mg/mL	~3
KF8K	30 mg/mL	~7.4
E ₂ (FKFE) ₂ E	30 mg/mL	~7

2. Investigating TMZ release from SAPH

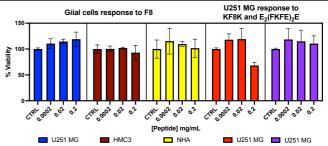
- i. pH 3 buffer was applied as supernatant on top of TMZ-loaded hydrogel
- ii. In 12-hour intervals, the analyte was gently stirred, and aliquots were scanned

media replenish collection 12 hours 12 hours 13 hours 14 repeat until 18 hours 18


3. Drug and Peptide Toxicity Profile

- i. Peptides were co-incubated with U251 Malignant Glioblastoma,
 Human Microglia and Human Astrocyte cell line.
- ii. Varying concentrations of peptide were tested.
- iii. Metabolic activity was used as an indicator of cell health.

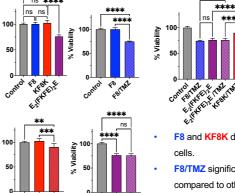
4. In-Vitro Release of TMZ from SAPH against U251 MG


- Transwell® was used to study the efficacy of formulation in 2D cell culture system of U251 MG.
- iii. Metabolic activity was measured after 72 hours.

RESULTS & DISCUSSION

- TMZ was stable in F8 compared to its variant, KF8K, due to less prodrug hydrolysis occurring at lower pH.
- In F8 (pH3), TMZ was released followed a burst release profile, followed by a lower release fraction subsequently compared to KF8K (not shown)
- Additionally, higher loading seems to significantly retain the unreleased fraction

F8 and E₂(FKFE)₂E do not disturb metabolic activity of U251 MG, HMC3 and NHA



Peptide is core component of SAPH

- At low concentrations, F8 and E2(FKFE)2E does not disturb metabolic activity
- KF8K starts to show trend (~0.2 mg/mL) for disrupting cell viability

F8 preserved and released TMZ thus reducing viability of U251 MG significantly

- F8 and KF8K did not disrupt viability of cells.
- F8/TMZ significantly reduced viability compared to other formulations.
- E₂(FKFE)₂E also have similar potency in disrupting viability with F8/TMZ

CONCLUSION & FUTURE WORK

- Significant potential of F8 as effective TMZ delivery system
- Investigating the therapeutic efficacy of F8/TMZ against Human Glioblastoma Tissue to provide highly relevant pre-clinical evidence for disease-targeting potential.
- Characterisation of the F8 'physiological parameters' using an *in vivo* Glioblastoma model for robust proof-of-concept towards clinical application