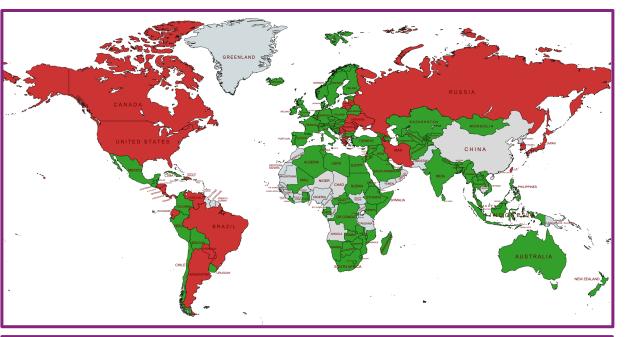
The 1st International Online Conference on Veterinary Sciences

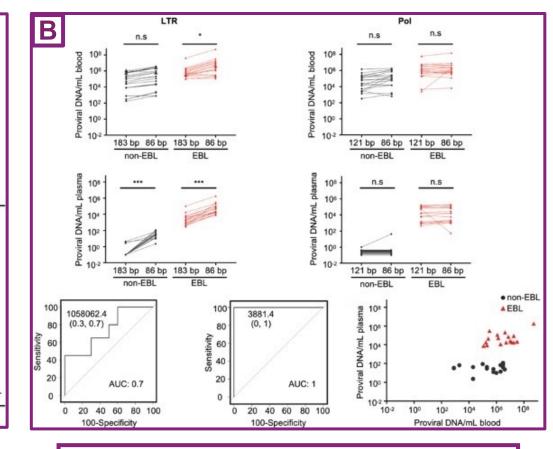
03-05 December 2025 | Online


Circulating Bovine Leukemia Virus Cell-Free DNA as a Promising Biomarker for Enzootic Bovine Leukosis

M. Ishrat Jahan¹, Toshiaki Inenaga², Sakurako Makimoto³, Md. Belal Hossain^{1,4}, Yuka Matsuoka¹, Sharmin Nahar Sithi¹, Samiul Alam Rajib¹, Arif Nur Muhammad Ansori^{1,5}, Kenji Sugata¹, Kazuhiko Imakawa⁶, Tomoko Kobayashi^{3*}, Yorifumi Satou^{1*}

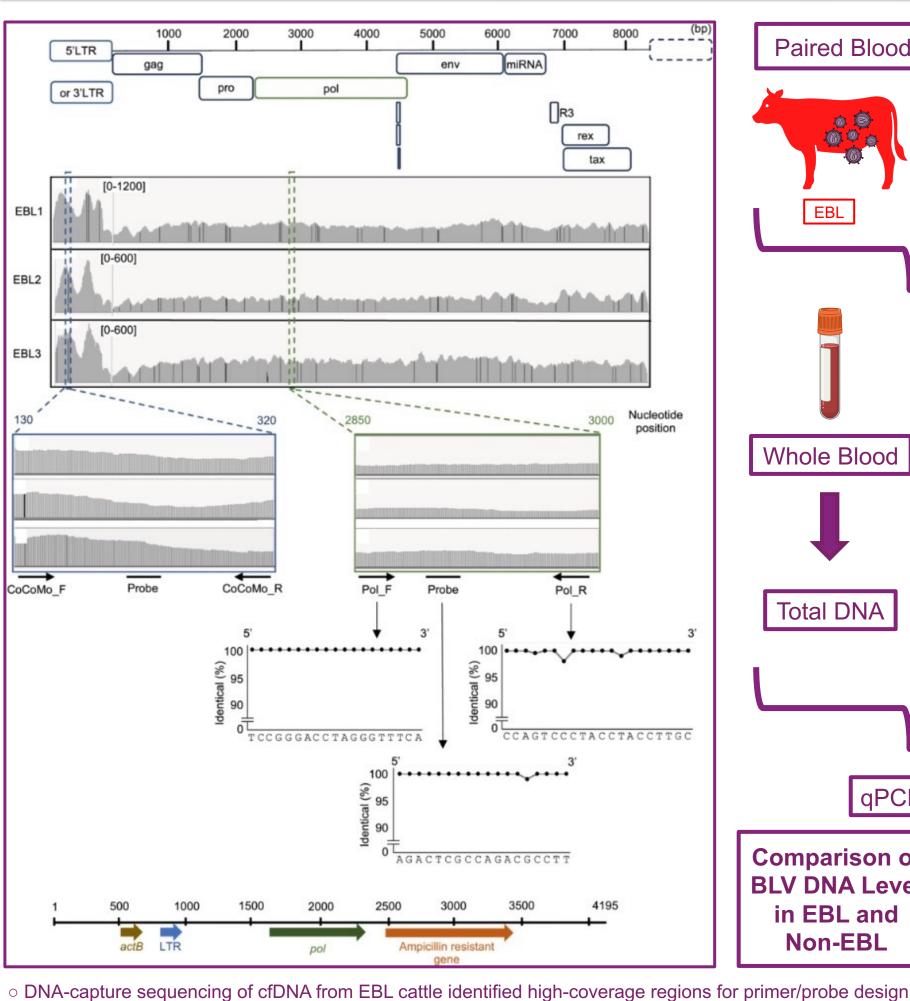
¹Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan ²Laboratory of Animal Management Science, Department of Animal Science, School of Agriculture, Tokai University, Kumamoto, Japan ³Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan ⁴Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh ⁵Postgraduate School, Universitas Airlangga, Surabaya, Indonesia

⁶Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan


INTRODUCTION & AIM

- 50 million cattle infected worldwide. No approved vaccines or antiviral drugs.
- **Control Strategies:** Biosecurity (quarantine, testing), Herd management, and Selective breeding.
- Current EBL diagnostics are invasive and time-consuming.
- Urgent need for non-invasive, rapid, and affordable diagnostic method to enable early detection and largescale monitoring of EBL.
 - Tumor cells release more cell-free DNA (cfDNA) due to higher turnover.
 - cfDNA proviral load may distinguish EBL and non-EBL cattle.

Comparison of Proviral Load in Whole Blood and Plasma


> EBL4 EBL5 EBL6

Comparison of Proviral DNA Detection Efficiency by Target Length

METHOD

Development of an efficient cfDNA-based approach for improved diagnosis of EBL.

- Paired Blood and Plasma Non-EBL Plasma Whole Blood Cell-Free **Total DNA** DNA qPCR **Comparison of BLV DNA Level** in EBL and
 - Non-EBL

Comparative BLV Sequence Analysis in Tumor and cfDNA Samples

RESULTS & DISCUSSION

Visceral lymph nodes

CONCLUSION

- cfDNA in plasma effectively distinguishes EBL cattle from non-EBL cattle, outperforming whole blood PVL measurements.
- Shorter PCR targets (86 bp LTR) improve detection sensitivity in cfDNA.
- · cfDNA predominantly originates from tumour clones rather than PBMCs, reflecting malignant cell turnover.
- Plasma cfDNA shows 100% sensitivity and specificity for EBL detection, whereas whole blood shows lower accuracy. cfDNA-based testing could enable earlier, rapid, and cost-effective EBL diagnosis, reducing
- economic losses in cattle farms.
- Larger studies are needed to confirm the cfDNA origin and validate its use as a routine biomarker.

REFERENCES

- Hossain MB, Kobayashi T*, Makimoto S, Matsuo M, Nishikaku K, Tan BJY, Rahman A, Rajib SA, Sugata K, Ohnuki N, Saito M, Inenaga T, Imakawa K, Satou Y*. J Virol. 2023; 97(1).
- Jahan MI, Inenaga T, Makimoto S, Hossain MB, Matsuoka Y, Sithi SN, Rajib SA, Ansori ANM, Sugata K, Imakawa K, Kobayashi T*, Satou Y*. Microbiol Immunol. 2025; 69(9).

• Aim:

o Control plasmid constructed containing BLV LTR, pol, and bovine actB fragments as qPCR standards.

• LTR and pol regions selected for qPCR due to strong read density and sequence conservation.

Pol target (121 bp): Pol F (2878-2896), Pol R (2978-2997), and Probe (2911-2928).

