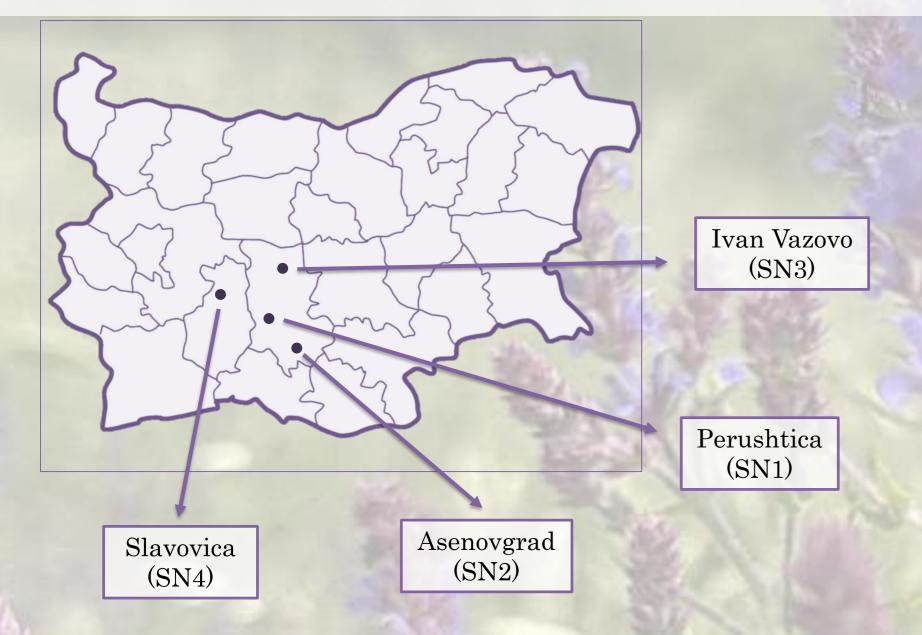


# The 6th International Electronic Conference on Applied Sciences



09-11 December 2025 | Online


## EVALUATION OF THE CHEMICAL COMPOSITION AND THE HISTOCHEMICAL LOCALIZATION OF *SALVIA NEMOROSA* L. ESSENTIAL OILS

Stanislava Ivanova <sup>1,2</sup>, <u>Ralitsa Parova <sup>1</sup></u>, Zoya Dzhakova <sup>1</sup>, Diana Karcheva-Bahchevanska <sup>1,2</sup>, Kalin Ivanov <sup>1,2</sup>

Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria

#### INTRODUCTION & AIM

- ► Salvia nemorosa L. (Lamiaceae) is a perennial herbaceous plant that typically attains a height of 30 to 50 cm and is native to extensive areas of Central Europe and Western Asia.
- ▶ Morphologically, *S. nemorosa* L. is distinguished by dark purple stems that support elongated, erect inflorescences. The flowers exhibit a range of colors, including white, pale pink, mauve, blue, and purple. The flowering period generally occurs from June to October.
- ▶ Aim of the study to determine the chemical composition of essential oils, isolated from *S. nemorosa L.* from four different locations in Bulgaria:



### **METHOD**



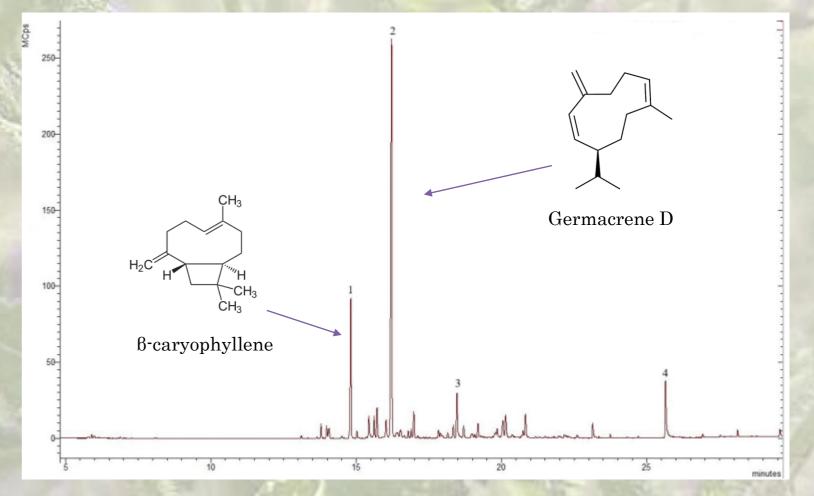
Hydrodistillation, 4h (Clevenger-type apparatus)



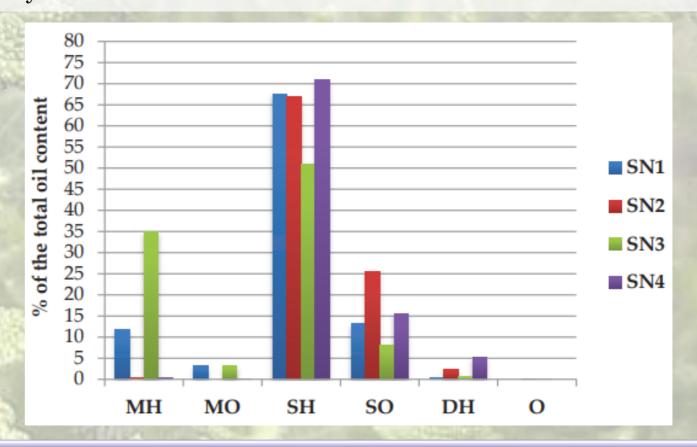
Isolated essential oil



GC-MS




### RESULTS & DISCUSSION


<u>Table 1</u>. Major volatile constituents identified in wild *S. nemorosa L.* EOs.

| Main compounds                     | SN1<br>(%) | SN2 (%) | SN3 (%) | SN4 (%) |
|------------------------------------|------------|---------|---------|---------|
| Germacrene D                       | 25.74      | 37.08   | 17.64   | 41.34   |
| β-Caryophyllene                    | 22.38      | 13.91   | 9.50    | 11.65   |
| Sabinene                           | 6.88       | 0.11    | 21.89   | 0.16    |
| Caryophyllene oxide                | 5.77       | 7.35    | 1.05    | 4.66    |
| <u>Terpene classes:</u>            |            |         |         |         |
| Monoterpene<br>hydrocarbons (MH)   | 11.76      | 0.41    | 34.80   | 0.35    |
| Oxygenated<br>monoterpenes (MO)    | 3.12       | -       | 3.08    | 0.06    |
| Sesquiterpene<br>hydrocarbons (SH) | 67.61      | 66.76   | 50.96   | 70.81   |
| Oxygenated<br>sesquiterpenes (SO)  | 13.09      | 25.58   | 8.19    | 15.53   |
| Diterpene hydrocarbons (DH)        | 0.41       | 2.44    | 0.56    | 5.21    |
| Others                             | -          | 0.15    | 0.12    | -       |
| Total identified (%)               | 95.99      | 95.34   | 97.71   | 91.96   |

Figure 1. Representative GC-MS chromatogram, showing the presence of the major sesquiterpenes β-caryophyllene and germacrene D



**Figure 2.** Main classes of volatile compounds in the analyzed SN1, SN2, SN3, and SN4 samples, where MH – monoterpene hydrocarbons; MO – oxygenated monoterpenes; SH – sesquiterpene hydrocarbons; SO – oxygenated sesquiterpenes; DH – diterpene hydrocarbons; O – others.



#### CONCLUSION

The chemical profile of *Salvia nemorosa* L. in different regions of Bulgaria shows the same dominant active compounds, but in varying percentages. The predominant high levels of β-caryophyllene and germacrene D in *Salvia nemorosa* L. suggest a potential source of bioactive sesquiterpenes.