The 6th International Electronic Conference on Applied Sciences

MDPI

09-11 December 2025 | Online

Design, Kinematic Analysis, and ANSYS Simulation of a 21-DOF Biomimetic Prosthetic Hand with SMA Actuation

Siddhi Sunil, Atharva Harinath Shastri, Vinayak Vijayan, Lihua Lou

Subcutaneous

tissue

NanoBio Mechanics & Manufacturing Laboratory, Department of Mechanical Engineering, College of Engineering, Computing and Applied Science, Clemson University, Clemson, SC 29634, United States.

INTRODUCTION

Traditional prosthetic hands face limitations in biomimicry, fabrication complexity, and efficiency. actuation printing, additive manufacturing produces structures that capable of controlled shape transformation over time offers a paradigm shift in prosthetic design.

Research Objectives:

- Anatomically accurate skeletal & skin structures
- 21-DOF kinematics via ANSYS simulation
- Grasping and pinching motion characterization
- Electrical muscle-like actuation integration
- 4D printing as fabrication direction

2.5. Skin Structure Design

The skin system consists of multiple compliant layers that replicate the mechanical behavior of human dermis and epidermis, providing both protection and tactile interface.

Epidermis Dermis

2.5.1 Skin Multi-Layer Architecture

Figure 4 : Skin Multi-layer architecture [2]

Figure 5 : Human hand skin CAD model

2.5.2. Mechanical Characterization Elastic Modulus: 0.5 MPa

(hyperelastic behavior)

Coefficient of Friction: 1.2 (dry

contact)

Contact Stiffness: Matches human

fingertip compliance

DESIGN METHODOLOGY

2.1 Biomechanical Analysis

Anatomical mapping of hand kinematics, joint ROM, and ADL force requirements.

2.2 Skeletal Structure Design

The skeletal framework replicates human hand with osteology bones: carpals, metacarpals, and phalanges. Each bone modeled with anatomically correct geometry and mechanical properties.

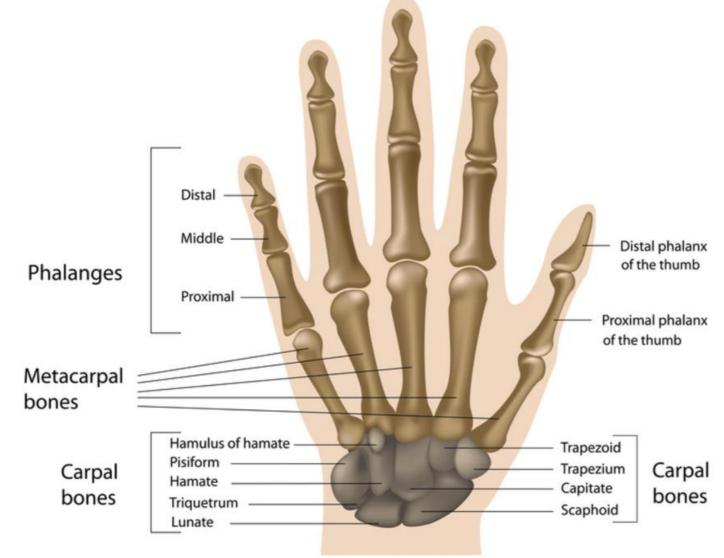


Figure 1 : Human hand skeletal structure [1]

2.3 Bone Geometry and Material Properties :

Material: High-strength thermoplastic (PLA composite)
Elastic Modulus: 3 G Pa

Density: 1.2 g/cm³
Design: Solid structure

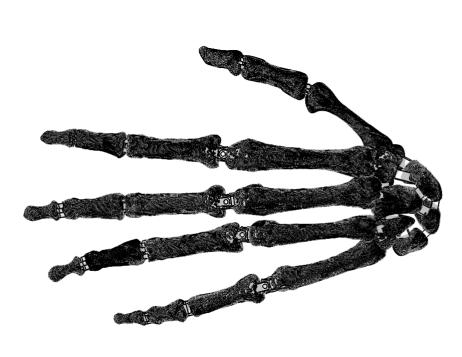
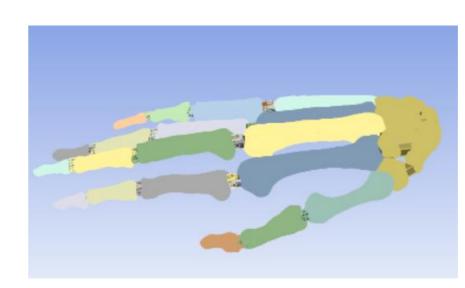


Figure 2: Human hand skeletal CAD model

2.4 Joint Articulation


Each joint incorporates ball-andsocket or hinge mechanisms with constrained DOF matching anatomical ranges. Joint surfaces include low-friction coatings to minimize wear during cyclic motion.

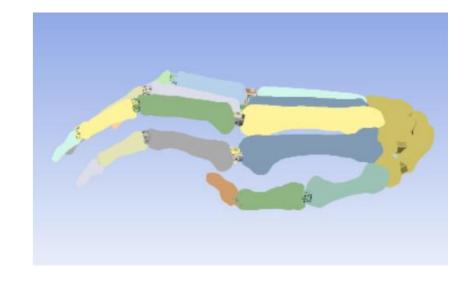


Figure 3: 3D Printed Bone structure

Joints	Degrees of freedom	Joint Type
Distal phalanx – Mid phalanx	1 DOF	Hinge
Mid phalanx – Proximal Phalanx	1 DOF	Hinge
Proximal Phalanx – Metacarpal	2 DOF	Universal Joint

ANSYS MOTION SIMULATION

Setup

- Rigid-body dynamics with contacts
- Hyperelastic skin models
- Anatomical DOF constraints
- Tendon actuator force profiles

Figure 6: Time-sequenced ANSYS simulation of grasping motion showing (left to right) initial open position, mid-grasp finger flexion, and final closed configuration with object contact

Current Refinement Phase

Fine-tuning motion control parameters based on simulation feedback. Iterative optimization of actuator timing, force modulation, and joint coupling to achieve smooth, natural transitions between grasp configurations.

RESULTS & DISCUSSION

We demonstrate a biomimetic prosthetic hand with anatomically accurate skeletal structure, compliant multi-layer skin, and 21-DOF kinematics validated through ANSYS simulation. Grasping motions achieve human-like force profiles and contact mechanics. Future integration of 4D printing technology will enable streamlined fabrication and enhanced functionality for next-generation prosthetic devices.

FUTURE WORK

Advanced Fabrication Integration

- Single-step fabrication of complete assembly
- Embedded shape-memory capabilities
- Eliminates manual assembly
- Enables complex geometries

References ;-

[1] Iglovikov, V. R. A. K. A. S. A. Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks; 2017.

[2] Tamatam, S. SkinKraft.

https://skinkraft.com/blogs/articles/lay ers-of-skin (accessed 2021-11-10).