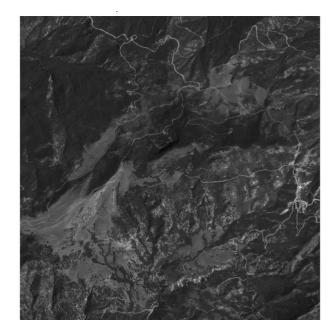


The 6th International Electronic Conference on Applied Sciences


09-11 December 2025 | Online


Spectral and Spatial Super-Resolution of ALSAT-2B Imagery Using a SwinUNet Generative Model for Enhanced Forest Monitoring

Asma Haichour¹, Meroua Rezig¹, Mohammed El Amin Larabi², Meziane Iftene² 1 Higher School of Computer Science and Digital Technology, 06043 Amizour, Algeria 2 Department of Scientific and Technological Watch, Algerian Space Agency, 16000 Algiers, Algeria

INTRODUCTION & AIM

Algeria's ALSAT satellite provides key environmental data, but its technical limitations hinder advanced forest monitoring. With only four spectral bands (RGB-NIR), it cannot detect early signs of drought or disease, and its 10m resolution obscures fine-scale damage. This research leverages AI to enhance existing ALSAT imagery, providing a cost-effective way to generate richer, more actionable data for protecting Algeria's forests.

(a) Multispectral 10 m

(b) Panchromatic 2.5 m

Figure 1: Visual Comparison of Multispectral and Panchromatic Imagery from ALSAT-2B

METHOD

Phase 1 **Spectral Super-Resolution**

1. Data Preparation

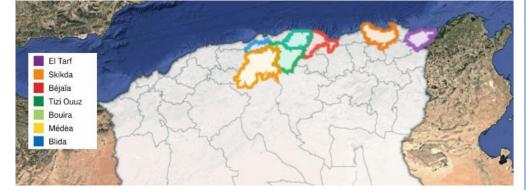


Figure 2: Dataset Coverage: Northern Algeria Forest Regions 18 co-registered scene pairs | BOA-corrected | Sub-pixel aligned

2. SwinUNet Architecture

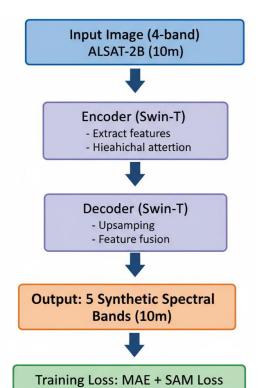


Figure 3: SwinUnet architecture

Phase 2 **Spatial Super-Resolution**

1. Gram-Schmidt Pansharpening

- Upsample 9-band stack to 2.5m
- GS orthogonal transformation
- Substitute first component with PAN band
- Inverse GS transform

2. Adaptive Intensity Matching

- Dynamic percentile normalization (2-98% or 5-95%)
- Maximizes correlation between PAN and synthetic intensity
- Scene-specific optimization

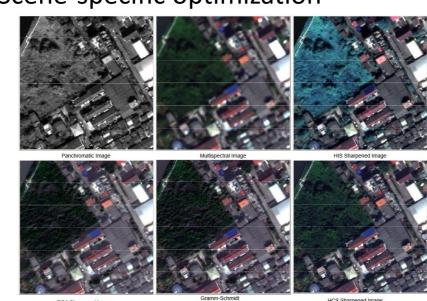


Figure 4: Visual comparison of pansharpening algorithms. Adapted from Padwick et al., 2010

Phase 03

Forest Classification Validation

Experimental Scenarios

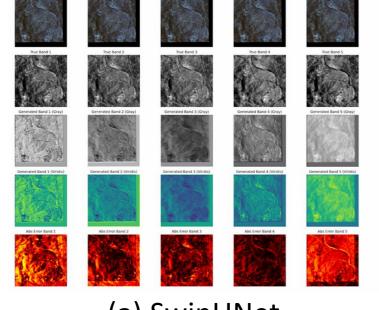
Baseline: 4 bands + NDVI (10m) **Spectrally Enriched:** 9 bands + NDVI (10m)

Fully Enhanced: 9 bands + NDVI

(2.5m)

Classification Protocol

Ground truth: ESA WorldCover 2021


(binary forest mask) **Classifier:** Random Forest

Training: 20% stratified pixel sample Metrics: Overall Acc., F1-Score

RESULTS & DISCUSSION

Table 1: Spectral Super-Resolution Model Comparison Performance

Model	Avg PSNR (dB)	Avg SAM (rad)	Avg SSIM
Pix2Pix U-Net	6.63	1.537	0.007
SSRGAN	18.64	0.163	0.52
SpectralResNet	20.72	0.154	0.56
Attention ResUNet	20.37	0.122	0.59
SwinUNet	24.34	0.107	0.63

(a) SwinUNet

(b) Pix2Pix U-Net

Figure 5: Qualitative Comparison of Synthesis Models

Table 2: Pansharpening Quality Assessment

Region	Optimal Normalization	Correla tion	SAM (rad)	ERGAS	Q-Index
Blida	2-98%	0.8226	0.105	5.65	0.9339
Tizi-Ouzou	5-95%	0.7730	0.134	7.18	0.9025
Béjaïa	5-95%	0.7135	0.160	8.36	0.8702

Pansharpening Success

- All regions achieve SAM < 0.16 rad</p>
- Q-index > 0.87 confirms structural preservation
- Adaptive normalization ensures scene-specific optimization

(a) Before (b) After

Figure 6: Before and After Enhancing Spatial Detail of ALSAT-2B Imagery Table 2: Forest Classification Performance

Scenario	Input Data	Accuracy (%)	F1 Score (%)	Gain (pts)
Baseline	4 bands (10m)	64.58	60.28	
Spectrally Enriched	9 bands (10m)	74.44	70.08	+9.8
Fully Enhanced	9 bands (2.5m)	77.75	74.03	+13.75

CONCLUSION

Spectral Enrichment 5 Bands Synthesized PSNR 24,34 dB

Spatial Enhancement 2.5m Resolution Achieved

Classification Gain • +13.75 points in F1 Score

Performance Gain 43% in false positives

16% in false negatives

FUTURE WORK / REFERENCES

- 1. Diffusion Models: Explore stochastic approaches for better spectral detail.
- Physics-Aware Losses: Add radiative constraints for realism.
- Rich Data: Use diverse seasons and times to enhance generalization.
- 1. Nie, Z., Chen, L., Jeon, S., & Yang, X. (2022). Spectral-Spatial Interaction Network for Multispectral Image and Panchromatic Image Fusion. Remote Sensing, 14(16), 4100.
- 2. Zhang, K., Sumbul, G., & Demir, B. (2020). An Approach To Super-Resolution Of Sentinel-2 Images Based On Generative Adversarial Networks. In M2GARSS 2020.