

The 6th International Electronic Online O9-11 December 2025 Conference on Applied Sciences 2025

2025

Conference

Bayesian Optimization-Driven U-Net Architecture Tuning for **Brain Tumor Segmentation**

Shoffan Saifullah, Rafał Dreżewski Faculty of Computer Science, AGH University of Krakow, Krakow, Poland

Motivation and Background

- Brain-tumor segmentation from MRI is crucial for diagnosis and treatment planning.
- Manual delineation → time-consuming and subjective.
- U-Net performs well, but architecture tuning (filters, depth, decoder width) is mostly manual.
- Need: Automated, data-driven optimization to improve accuracy and reproducibility.

Key Problem:

 U-Net's manual design leads to suboptimal results across modalities and tumor types.

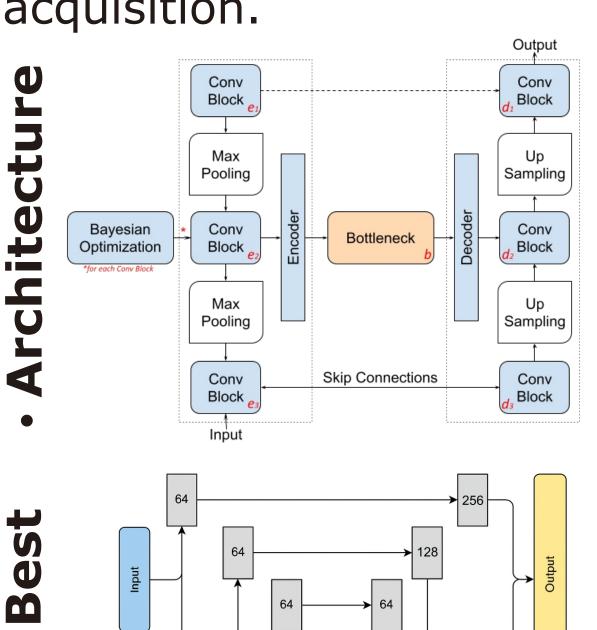
Related Works

Category	Example Methods	Limitation
U-Net Variants	ResUNet, Unet++, Attention U-Net	Manual architecture design
Hybrid Models	ViT-UNETR, ASPP-U-Net	High complexity
Optimization Methods	PSO-UNet, GA-UNet	Expensive, premature convergence
BO in ML	Classification/egression	Rarely applied to segmentation
Gap → Need for architecture-level BO		

Proposed Method: BO-UNet

Core Idea

· Bayesian Optimization (BO) iteratively selects encoder, bottleneck, and decoder filter configurations using a Gaussian Process (GP) surrogate and Expected Improvement (EI) acquisition.



- Define search space:
 - E_1, E_2, E_3, B D₃,D₂,D₁ filters.
- 2. Train candidate U-Net → evaluate (DSC, JI).
- 3. GP models fitness landscape.
- 4. El selects next candidate.
- 5. Update GP until convergence.

Experimental Setup

Datasets

- FBTS: Meningioma, Glioma, Pituitary
- BraTS 2021: (T1, T1CE, T2, FLAIR Modalities

Preprocessing

• 256×256 grayscale images, normalization.

Training Settings:

• Adam optimizer (1e-4), 50 epochs, batch size 8, hardware: 8× NVIDIA A100-SXM4-40GB GPUs.

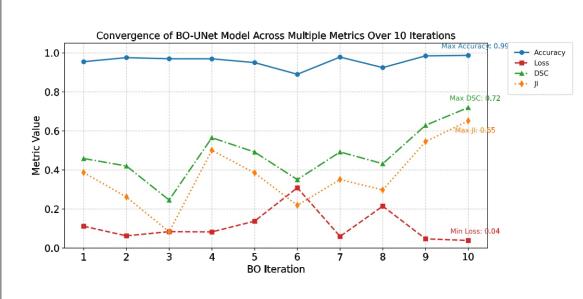
Evaluation Metrics:

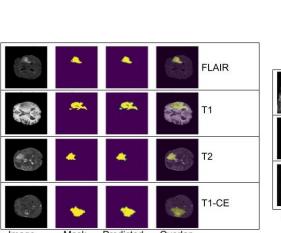
 Accuracy, DSC, JI, BCE loss, Wilcoxon significance test (p < 0.01).

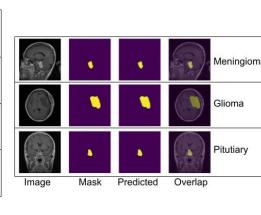
Results & Discussion

Quantitative Results *

- FBTS
 - **DSC:** 0.9559
 - **-JI:** 0.9156
 - **Accuracy:** 0.9824
- BraTS 2021 **- DSC:** 0.9456
 - **JI:** 0.8970
 - **Accuracy:** 0.9768







- Improved over baseline and SOTA models.
- BO-UNet achieved faster convergence and better generalization.
- Wilcoxon test: p < 0.01 confirms statistical significance.

Conclusion

- BO-UNet automates U-Net architecture tuning via Bayesian Optimization.
- Achieves higher Dice and Jaccard scores across datasets.
- Reduces manual effort, improves reproducibility.
- Future works: multi-objective BO, hybrid BO-PSO for faster convergence, and federated validation across hospitals.