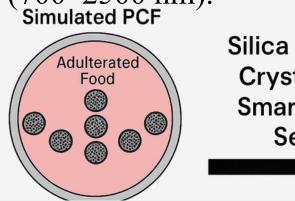
The 6th International Electronic Conference on Applied Sciences

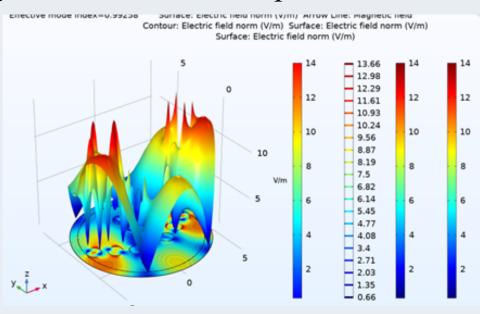

09-11 December 2025 | Online

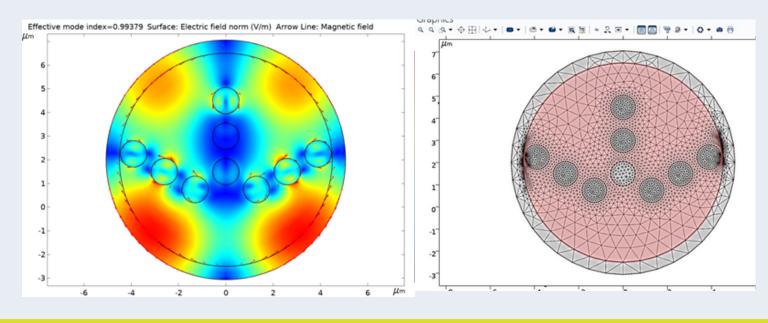
Design and Simulation of a Smart Arrow Photonic Crystal Fiber Sensor for Multimodal Optical Detection of Food Adulteration

Sunil Sharma^{1*}, Sandip Das², Anu Mehra³, Prashant Sharma⁴, Athar Ahmed⁵, Prasun Chakrabarti⁶, Chin Shiuh Shiehu⁷

*O INTRODUCTION & AIM

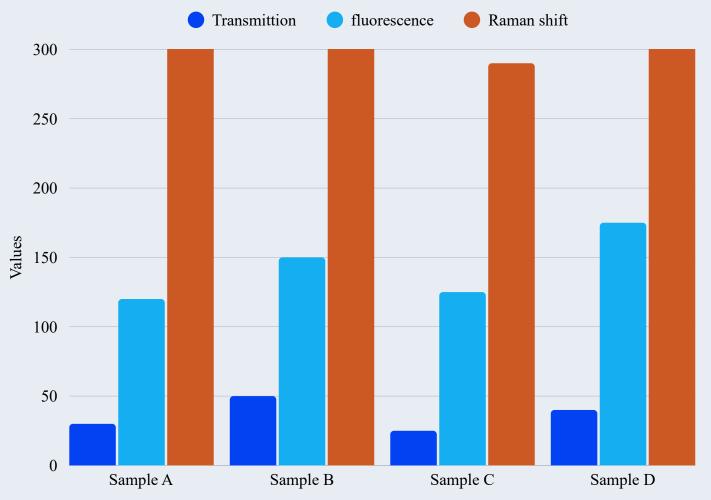
- Food adulteration threatens global health, while traditional detection methods are slow and destructive. Optical spectroscopy offers fast, non-destructive analysis but still needs a compact and highly sensitive sensing platform.
- This work designs and simulates a high-sensitivity ARROW Photonic Crystal Fiber sensor in COMSOL to detect food adulterants using NIR light (700–2500 nm). Simulated PCF




Food Adulteration

- NIR Fluorescence: 40 to 75 nm Displacement
- Raman Displacement:

METHOD


- ARROW PCF modeled in COMSOL shows strong evanescent interaction with analytes using, field distribution, and confinement loss analysis.
- Detection uses absorbance, fluorescence, Raman shifts with high sensitivity and clear spectral changes in adulterated samples.

RESULTS & DISCUSSION

- n_eff decreases with wavelength; adulterated samples show stronger absorbance, weaker transmittance, and clear spectral shifts.
- Wavelength rise lowers neff, and adulteration causes sharper absorbance, transmittance loss, and spectral shifts.

-,6,-

CONCLUSION

Sample Type	Absorbance (a.u.)	Transmittan ce (%)	Fluorescenc e Shift (nm)	Raman Shift (cm ⁻¹)	Sensitivity (%)
Pure Sample 1	0.85	70	40	200	98.4
Pure Sample 2	0.87	68	42	220	98.4
Adulterated Sample 1	1.05	50	65	600	98.4
Adulterated Sample 2	1.1	45	72	720	98.4
Adulterated Sample 3	1.2	40	75	800	98.4

Arrow PCF offers fast, non-destructive, 98.4%-accurate NIR adulterant detection for real-time food safety

FUTURE WORK / REFERENCES

The sensor can be optimized for wider adulterant detection, integrated into portable devices, and enhanced with machine-learning—based spectral analysis for real-time, onsite food quality monitoring.