

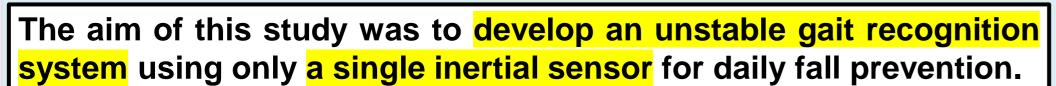
# The 6th International Electronic Conference on Applied Sciences



09-11 December 2025 | Online

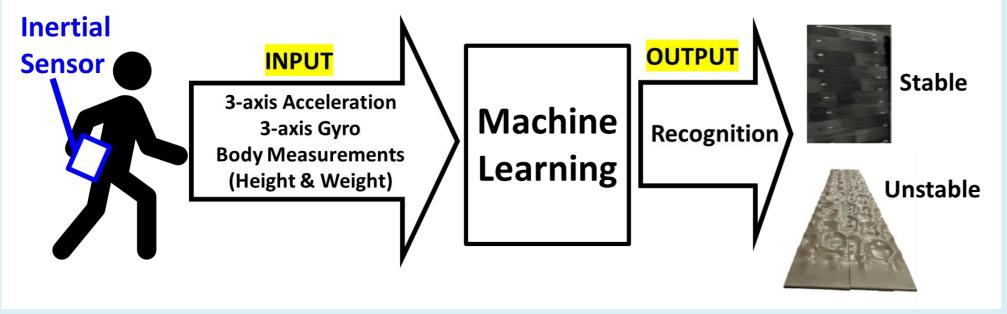
# Unstable Gait Recognition Using Trunk Inertial Data and Body Measurements of Public Datasets: A Pilot Study

Kodai Kitagawa<sup>1</sup>, Chikamune Wada<sup>2</sup>, Nobuyuki Toya<sup>3</sup>


<sup>1</sup>National Institute of Technology, Hachinohe College, Hachinohe, Japan 
<sup>2</sup>Kyushu Institute of Technology, Kitakyushu, Japan 
<sup>3</sup>Hokkaido Information University, Ebetsu, Japan

#### INTRODUCTION & AIM

- Elderly people experience fall accidents since they cannot recognize own stability in walking [1].
- Thus, recognition systems for unstable gait have been developed to prevent falls. However, many previous systems required multiple sensors [2].




**AIM** 



#### PROPOSED METHOD

- The proposed method recognizes an unstable gait by machine learning with trunk inertial data and body measurements (Fig.1).
- The trunk inertial data are measured using a single inertial sensor on the low back(Fig.1).



**Fig.1 Proposed Method** 

# **EVALUATION**

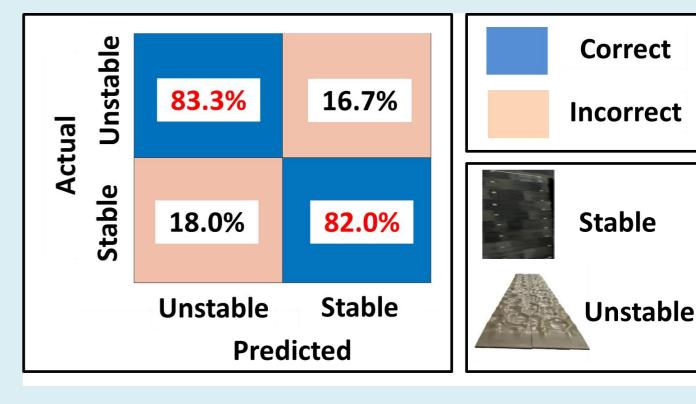
- The proposed method was tested by the North American Congress on Biomechanics (NACOB) multi-surface walking dataset published by Jlassi et al [3].
- The trunk inertial data and body measurement values of 134 people in the NACOB public dataset were used in this study.
- The proposed method recognized two gait patterns on flat (stable) and bumpy (unstable) roads.

#### **Conditions of Evaluation**

**Participants**: 134 people  $(30 \pm 9.2 \text{ years, mean} \pm \text{S.D.})$ 

**Inertial Sensor**: Dot (Xsens Tech) (Sampling:120Hz)

**Software: MATLAB R2024a** 


**Machine Learning**: k-Nearest Neighbor (k=1)

**Training and Testing**: 5-folds cross validation

## RESULTS & DISCUSSION

## **Performances of Proposed Method**

**Accuracy ⇒** 82.7%



**Fig.2 Confusion Matrix** 



- The proposed method recognized stable and unstable gait patterns with greater than 80% accuracy.
- This accuracy was comparable to previous gait recognition [2].

The proposed method can be used for daily gait recognition systems using a single inertial sensor.

#### CONCLUSION / FUTURE WORK

- The proposed method recognized an unstable gait by machine learning with trunk inertial data and body measurements.
- The results indicate possibility that the proposed method can be used for daily gait recognition systems using a single inertial sensor.
- In the future, the proposed method should be evaluated in more various conditions.

#### REFERENCES

- [1] M. Y. Osoba, et al. "Balance and gait in the elderly: A contemporary review", Laryngoscope Investigative Otolaryngology, Vol.4, No.1, pp.143-153, 2019.
- [2] S. Sprager and B. J. Matjaz, "Inertial sensor-based gait recognition: A review", Sensors, Vol.15, No.9, pp.22089-22127, 2015.
- [3] O. Jlassi et al., "The NACOB multi-surface walking dataset", Scientific Data, Vol.11, No.1, p.880, 2024.

## Acknowledgements / Conflict of Interest

**Acknowledgements**: This study was supported by JSPS KAKENHI (Grant Number: 25K16012).

**Conflict of Interest: None.**