The 5th International Electronic Conference on Agronomy

15-18 December 2025 | Online

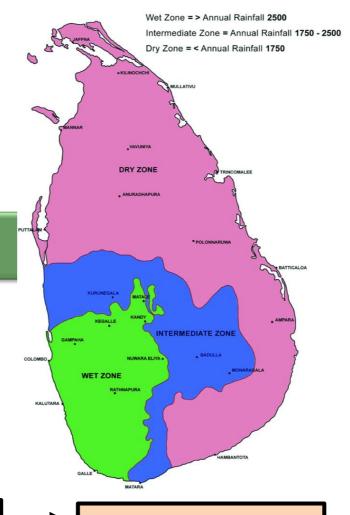
Al-Driven Paddy (Oryza sativa) Yield Forecasting Using Open Satellite Data, Weather APIS and Historical Data for Sri Lankan Agro zones

D. Senevirathne 1, W.M.A.C. Premasiri 2

Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka 1 Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka 2

INTRODUCTION & AIM

- Oryza sativa (Paddy) is a widely consumed staple food worldwide and Sri Lanka has been producing paddy for centuries
- A growing population and increasing food demand make timely and accurate paddy yield prediction essential for national food security and resource management
- Conventional yield estimation methods are often manual, time-consuming and limited in accuracy, highlighting the need for modern approaches
- This research introduces a stacked ensemble learning approach using XGBoost, integrating multiple base and meta models, achieving an accuracy ($R^2 = 0.9986$) for district-level seasonal paddy yields.


Aim -

This study uniquely combines multiple openly available datasets: CHIRPS 2.0 rainfall, NASA POWER climate variables and RRDI soil maps to create a comprehensive dataset for districtlevel paddy yield forecasting in Sri Lankan agro zones

Oryza sativa (Paddy)

Paddy cultivation in Sri Lanka

METHOD

Construction

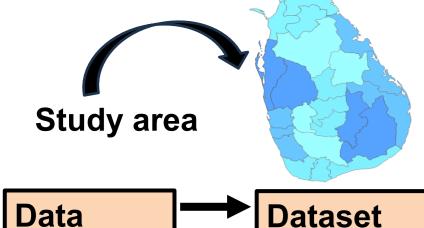
climate, soil,

and historical

yield data with

simulated crop

heterogeneou


harvesting

patterns

✓ Created 12

s datasets

✓ Integrated

Data collection

- Rainfall, climate, soil maps, historical yield and crop calendar
- √ (2004–2024, 25 districts, 3 agro-climatic zones)

(XGBoost Base

- + Meta Models) ✓ Trained 12 base
- datasets ✓ Out-of-fold
- to train intermediate meta models
- Final XGBoost stacked ensemble combined outputs for prediction

RESULTS & DISCUSSION

Final XGBoost stacked model achieved:

RMSE = 3,535 MT

Model Performance

- $R^2 = 0.9986$
- NRMSE = 0.76%

Interpretation:

The model predicts district-level seasonal paddy yield with very high accuracy, showing the power of combining climate, soil and historical yield data with crop calendar simulation

Paddy Yield Trends

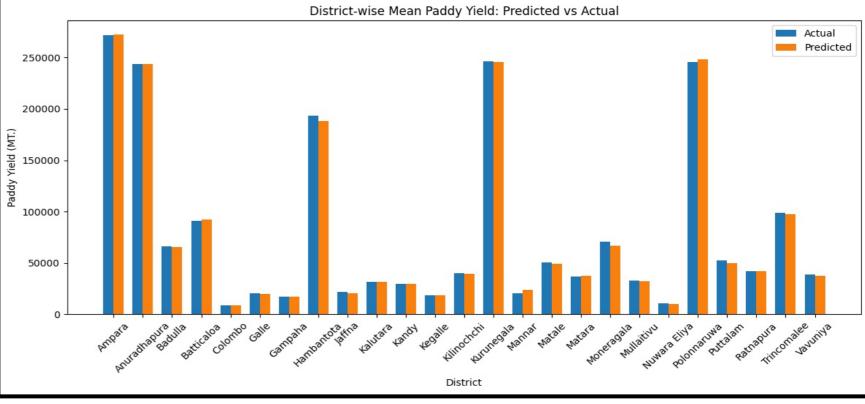
Time period-(2004-2024)

Lowest Yield:

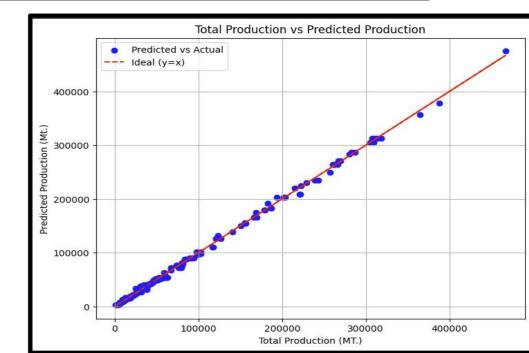
Mannar district, Yala 2006 (~185 MT)

Highest Yield:

Anuradhapura district, Maha 2019-2020 (~530,356 MT)


Observation: Seasonal and districtwise variations reflect agro-climatic influences on paddy production

Impact of **Factors**


- Soil and climatic factors
- Model captured rainfall, temperature, pH, and salinity effects on yield
- Highlights potential for climateinformed agricultural planning

Novelty & Implications

- Integrated heterogeneous data + stacked ensemble learning approach is a novel approach for Sri Lankan district-level paddy forecasting
- Can support data-driven decision-making for sustainable paddy production and resource allocation

CONCLUSION

- The XGBoost-based stacked ensemble model can accurately predict district-level seasonal paddy yields in Sri Lanka
- ❖ Integrating climate data, soil properties, and historical yields provides a robust and data-driven framework for forecasting
- ❖ The model's high accuracy (R² = 0.9986, NRMSE = 0.76%) demonstrates its potential to support sustainable paddy production planning
- This approach can be applied globally to paddy and other staple crops, supporting data-driven decisions for food security

Machine Learning

- models on
- predictions used

Yield **Prediction &** Modeling **Evaluation**

- **Predicted** district-level seasonal paddy yields
- Performance: RMSE = 3,535 $MT, R^2 = 0.9986,$ NRMSE = 0.76%

FUTURE WORK / REFERENCES

- Expand the framework to other staple crops or regions worldwide by integrating real-time satellite data for near-real-time yield predictions
- Develop a user-friendly decision support platform for farmers and policymakers

Sri Lankan Rice Statistics: Department of Census and Statistics, Sri Lanka (2024) NASA POWER: Stackhouse et al., 2017, IEEE Geoscience and Remote Sensing XGB & Ensemble Learning: Chen & Guestrin, 2016, Proceedings of KDD CHIRPS 2.0: Funk et al., 2015, Remote Sensing of Environment