The 5th International Electronic Conference on Agronomy

15-18 December 2025 | Online

Enhancing photosynthetic efficiency and nutrient uptake in maize (Zea mays L.) using extracellular polymeric substances recovered from waste sludge

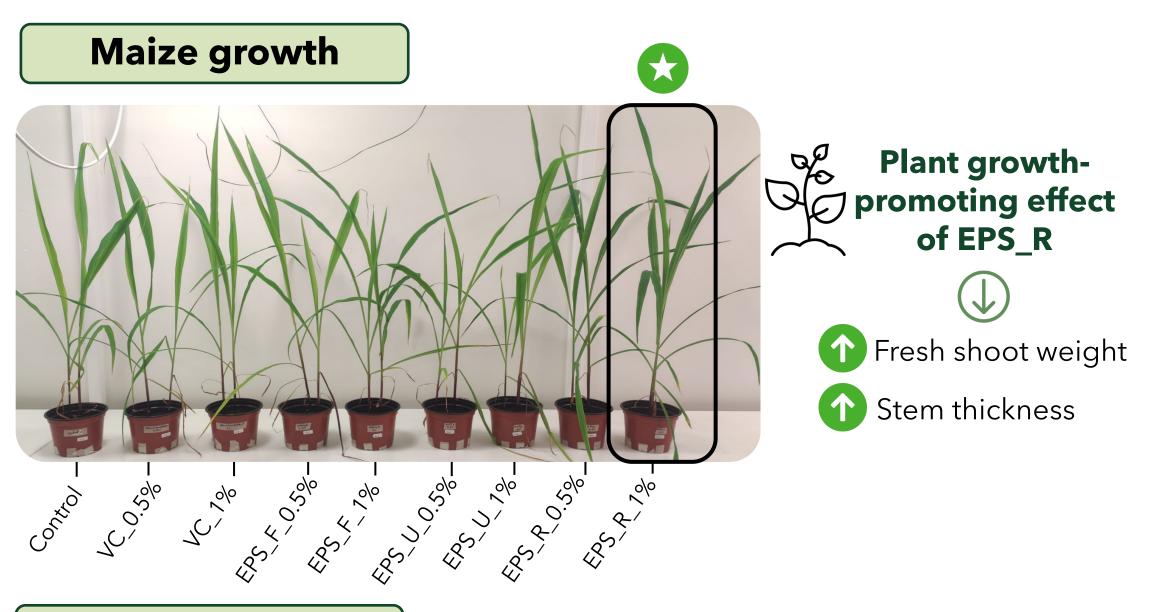
Catarina Miranda¹*, Sofia I. A. Pereira¹, Ana S. S. Sousa¹, Philipp Wilfert^{2,3}, Mark van Loosdrecht², António Martins⁴, Paula M. L. Castro¹, Catarina L. Amorim¹

¹ Centre for Biotechnology and Fine Chemistry (CBQF) - Associate Laboratory, Faculty of Biotechnology, Portuguese Catholic University, Porto, 4169-005, Portugal ² Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629 HZ, The Netherlands ³ Urban Water Management, University of Applied Sciences, Lübeck, 23562, Germany ⁴ Águas do Algarve S.A., Faro, 8000-302, Portugal

*cmiranda@ucp.pt

BACKGROUND

Extracellular polymeric substances (EPS)


can be recovered from waste aerobic granular sludge (AGS) generated during biological wastewater treatment. These biopolymers are rich in organic carbon and nutrients and can improve the water-holding capacity of soils, making them suitable for agricultural applications.

AIM

Evaluate the effects of incorporating different sources of EPS as soil amendments on the growth and nutritional traits of maize

METHODS Greenhouse pot experimental setup EPS_F EPS_U EPS_R Vermicompost (VC) Both amendments were applied at doses of **0.5%** and **1%** (w/w) EPS recovered from waste AGS sourced from two WWTPs (Faro - F, and Utrecht - U) **Plant analyses** and a lab-scale reactor - R. After Maize 7 weeks growth Chlorophyll content EPS_U EPS_R Control (soil only) **❖ Nutrient** 0.5% and 1% uptake

RESULTS & DISCUSSION

Nutrient uptake

	Nutrient content (mg/kg)			
	Phosphorus (P)	Magnesium (Mg)	Potassium (K)	Sodium (Na)
Control	1424.61 ± 165.72^{ab}	2322.92 ± 230.36^{d}	$30367.82 \pm 2537.94^{bc}$	60.01 ± 8.15^{a}
VC_0.5%	1479.56 ± 75.43^{ab}	2682.59 ± 215.13^{bcd}	30725.49 ± 995.13^{bc}	48.44 ± 5.91^{b}
VC_1%	1425.66 ± 127.52^{ab}	2400.44 ± 77.80^{d}	$31236.24 \pm 1154.57^{bc}$	47.78 ± 7.98^{b}
EPS_F_0.5%	$1560.00 \pm 212.63^{\text{a}}$	2440.07 ± 207.58^{d}	34314.41 ± 3288.45^{b}	$37.05 \pm 1.95^{\circ}$
EPS_F_1%	1659.91 ± 223.88 ^a	3033.73 ± 370.62^{ab}	40624.33 ± 3471.53	25.68 ± 3.13 ^d
EPS_U_0.5%	1615.29 ± 87.45 ^a	2579.45 ± 23.49^{cd}	34748.64 ± 2494.71^{b}	$40.03 \pm 6.46^{\circ}$
EPS_U_1%	1491.05 ± 111.84^{ab}	2380.48 ± 239.60^{d}	32027.67 ± 2390.55^{b}	$\textbf{23.96} \pm \textbf{2.68}^{\text{d}}$
EPS_R_0.5%	1519.97 ± 207.22a	2884.00 ± 295.22^{bc}	31757.78 ± 5008.98^{b}	$\textbf{24.30} \pm \textbf{2.92}^{\text{d}}$
EPS_R_1%	1245.95 ± 152.08^{b}	3383.78 ± 426.61^{a}	27171.85 ± 1230.49^{c}	$\textbf{20.20} \pm \textbf{3.50}^{\text{d}}$

Leaf chlorophyll content Soil Plant Analysis Developmen (SPAD) readings

1% of EPS, regardless of the source, increased the chlorophyll content, especially pronounced in plants grown in soils with 1% of EPS_R

Maize grown in EPS-amended soils exhibited higher P accumulation in shoots

EPS_R_1% and EPS_F_1% markedly increased Mg and K levels by 46% and 34%, respectively, compared to the control

EPS and VC amendments prevented Na translocation to shoots, with the strongest effect in EPS amendments

Certain EPS treatments improved the use efficiency of several **nutrients** (Na, K, Ca, and Zn), compared to the VC

CONCLUDING REMARKS

- Both the source and dose of EPS significantly influenced their effectiveness as soil amendments
- EPS outperformed the effects of vermicompost amendments, enhancing the photosynthetic efficiency and nutritional attributes of maize
- Using EPS as an agricultural product supports the circular economy in wastewater treatment and promotes sustainable practices in agriculture

Acknowledgments: This work was financed by the project ReCROP (PRIMA/0002/2020) funded by FCT, Portugal. The authors thank the CBQF scientific collaboration under the FCT project UIDB/50016/2020. CM thanks the PhD grant from FCT (doi.org/10.54499/2020.06577.BD) and POCH, supported by the European Social Fund and MCTES national funds. CLA and SIAP thank FCT for the Assistant Researcher contract (2023.15056.TENURE.048 and 2023.15056.TENURE.047, respectively) through the FCT-TENURE Program funded by the Recovery and Resilience Plan (PRR).