

Fourier Transform Infrared Emission Spectroscopy of Si II

Zaid Mustafa, K. Haris

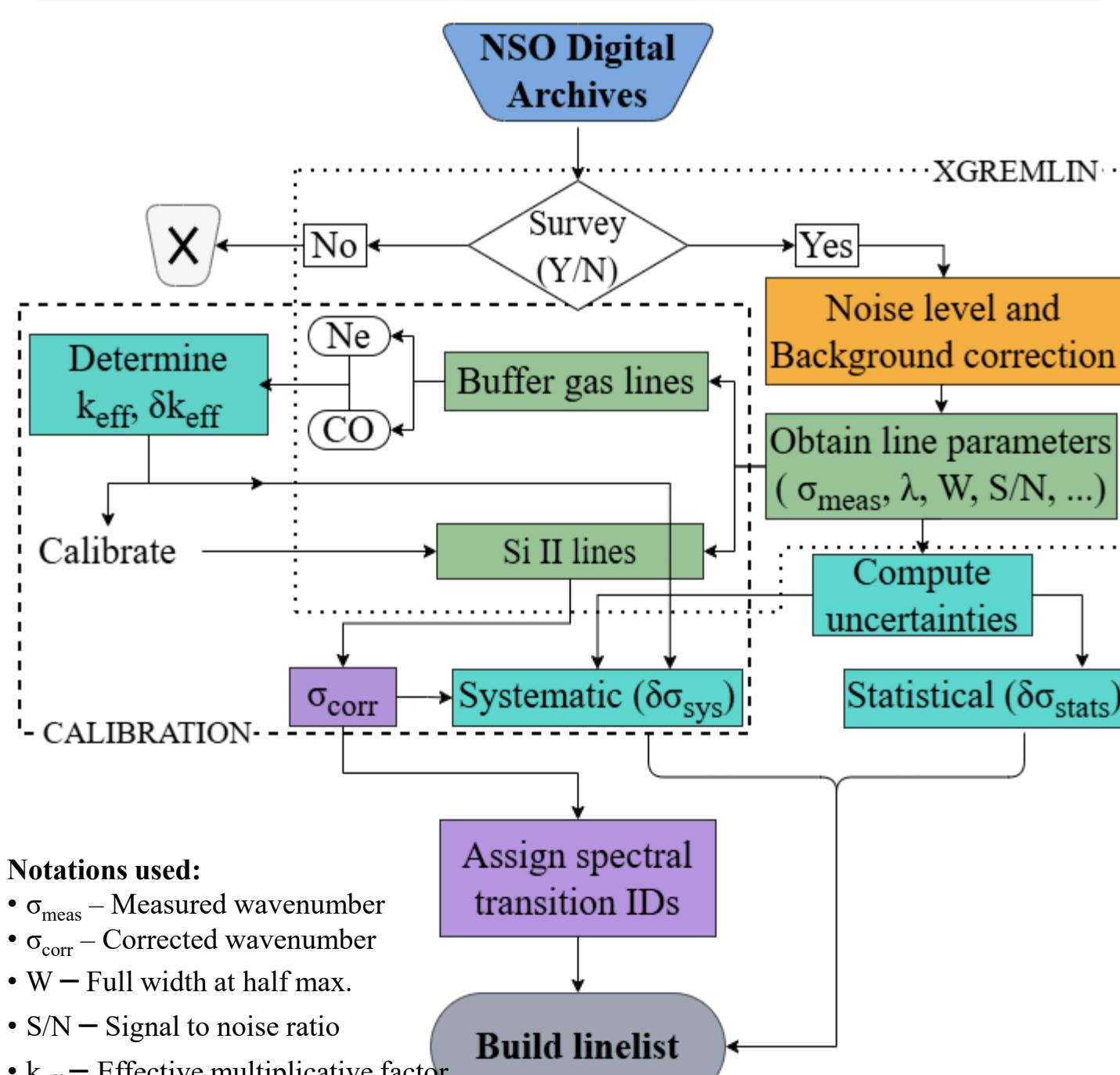
Department of Physics, Aligarh Muslim University, Aligarh 202002, India

INTRODUCTION & AIM

Significance: Silicon (Si), the 8th most abundant and astrophysically important element, plays a critical role in stellar evolution, nucleosynthesis, and plasma diagnostics.

Precise atomic data, especially for IR transitions of singly ionised silicon (Si II) is essential for:

- Modelling in stellar atmospheres [1].
- High-redshift galaxy studies with JWST NIRSpec [2].


Research gap: Existing Si II data in the NIST atomic spectra database (ASD) lacks sufficient experimental accuracy and precision [3].

Nearly all IR lines are theoretical, except for just three measurements made by Shenstone in 1961, using a 21 ft. grating spectrograph but, without reporting any uncertainties [4].

Aim/objective: To get a precise Si II atomic data, along with uncertainties in the near- and mid-IR regions, by using high-resolution FT spectra recorded by 1-m (f/55 IR-visible-UV) FT spectrometer at KP National Observatory, AZ, USA.

Atomic Structure: Si II belongs to the aluminium (Al I) isoelectronic sequence with the ground configuration [Ne]3s²3p comprised of two levels, ²P_{1/2, 3/2}, the level with J=1/2 being the lowest one. Excitation of the valence electron creates configurations of the type 3s²nl ($n \geq 3$, l = s, p, d, f, ...) with doublet (²L_J) levels. The 3s3p² configuration containing the ⁴P, ²D, ²S, and ²P terms is created from the ground configuration 3s²3p by excitation of the 3s electron. Further excitation from 3s3p² leads to the 3s3p(³P^o)nl ($n \geq 3$, l = s, p, d, f, ...) and 3p³ configurations.

METHOD

RESULTS & DISCUSSION

Table-1: Summary of spectrograms used and total number of Si II emission lines measured in IR region, from 780 to 5400 nm.

Wavenumber Range (cm ⁻¹)	Hollow Cathode Lamp Type*	Pressure (Torr)	Spectral Resolution (cm ⁻¹)	Calibration Standards	No. of lines measured
7664 – 44591	Si–Ne	0.7	0.057	Ne I, Ar I	3
1746 – 9937	Al/Si–Ne	1.74	0.013	Ne I	18
1746 – 9937	Al/Si–Ne(Ar)	1.8	0.013	Ne I, CO	18
1746 – 9937	Cu/Si–Ne(Ar)	2.8–3.8	0.013	Ne I, CO	25
1669 – 9937	Al/Si–Ne(He)	2.45–2.8	0.013	Ne I	23
1669 – 9937	Al/Si–Ne	2.5	0.013	Ne I, CO	14

Table-2: Sample of a few measurements and their comparison.

σ_{corr} (cm ⁻¹)	S/N	W (mK)	σ_{NIST} (cm ⁻¹)	$\Delta\sigma_{\text{C-N}}$ (cm ⁻¹)	Transition
2531.751(2)	160	18	2531.81	-0.059	² D _{5/2} to ² F _{5/2}
–	–	–	2533.11	–	
2837.724(2)	17	11	2837.69	0.034	² D _{3/2} to ² F _{5/2}
2860.918(2)	48	23	2860.9	0.018	
5888.686(2)	123	42	5888.65	0.036	² S _{1/2} to ² P ₀ _{1/2}
5913.180(2)	299	38	5913.16	0.020	
7299.217(2)	70	55	7299.21	0.007	² P _{3/2} to ² S _{1/2}
–	–	–	7323.72	–	
8509.340(3)	23	59	8509.31	0.030	² P _{3/2} to ² D _{3/2}
8509.528(2)	180	53	8509.47	0.058	
8533.839(2)	89	54	8533.82	0.019	² P _{1/2} to ² D _{3/2}
12735.802(4)	63	91	12735.8	0.002	
12737.296(5)	44	92	12737.27	0.026	² D _{5/2} to ² F _{7/2}
					² D _{3/2} to ² F _{5/2}

Notes:

* Type of Hollow cathode lamp, represented as “cathode_material – buffer_gas”.

Lines observed by A.G. Shenstone (1961) ref. [4].

CONCLUSION

In this work, we considered 8 different FT spectra and carefully analyzed them with the help of the XGREMLIN package. A comprehensive calibration procedure was followed, involving the use of known low-excitation lines of buffer gas, and an advanced statistical toolbox [5], to determine k_{eff} and δk_{eff} . A total of more than 80 Si II lines were measured, with around 30 unique lines in near- and mid-IR region from 1800 to 12800 cm⁻¹. An immediate comparison of our experimentally measured data with the existing theoretical data in NIST ASD clearly shows that they are at least 10-fold better in accuracy, with the difference not exceeding 0.09 cm⁻¹. Such great precision is extremely important for astrophysicists to accurately determine the composition of stars and galaxies and hence, understand various nucleosynthesis processes and stellar evolution.

FUTURE WORK / REFERENCES

Future Work: Inclusion of lines in visible and UV regions as well as a more in-depth analysis, including the use of Level Optimization (LOPT) procedures to establish the energy levels and hence precisely model the atomic structure of Si II.

References:

1. Pehlivan Rhodin, A; et al. *A&A* **2024**, 682, A184.
2. Fujimoto, S.; et al. JWST Cycle 4 General Observer Proposal 6796, **2025**.
3. Kramida, A; et al. NIST Atomic Spectra Database, **2024**. V5.12.
4. Shenstone, A. Proc. R. Soc. Lond. A **1961**, 261, 153–174.
5. Kramida, A. The European Physical Journal D, **2024**, 78(4), 36.